
Vol 21, No 2 (2014): Journal of Faculty of Engineering & Technology (JFET), Pages 10-20

SECURITY TECHNIQUES AND SOLUTIONS FOR PREVENTING THE

CROSS-SITE SCRIPTING WEB VULNERABILITIES: A GENERAL

AAPROACH

M. Junaid Arshad
1*

, N. Nigar
1
, H. Ahmad

2
, Amjad Farooq

1
, M. Usman Ghani

1
, M.

Adrees
1

1
CS&E Department, UET, Lahore, Pakistan

2
Virtual University (VU), Lahore, Pakistan

Abstract

Across the World Wide Web the development of social network sites is directly

proportional to the complex user-built HTML contents and such things are rapidly

becoming the model rather than exception. The complex user-built web messages are the

threats for XSS (cross site scripting) attacks which hits different websites and private user

information. In such scenario, the process that prevents web application to attacks from

XSS has been of great interests for web researchers. The most of the web applications

and private user information have security issues with XSS attacks. By applying such

technique the attackers embed their malicious scripts onto the application’s outputs. Such

contaminated responses from the servers are sent to a client’s web browser where it is

executed and user’s confidential information is shifted to a third party. Currently XSS

attacks on server sides are prevented, by thoroughly observing, removing and filtering

such malicious contents induced by the hackers. The criticality of XSS attack for social

network sites effects even greater because a hacker can attempt more socially engineered

attack where the marked user can be fooled by realizing that the attack links are initiating

by his ‘friends’. The proposed solutions focus on prevention methods for XSS-cross-site

attacks both on the client-side and on the server-side by keeping a track of all users’

information and requests. We have also discussed various recent XSS attacks in real

world and have done analysis that why filtering mechanisms are so abortive and being

failed in defending these attacks.

Keywords: Attacks Prevention; Filtering; Security Issues; Cross-Site Scripting-XSS

1. Introduction

1
Web today has evolved and is still growing at a rapid pace. Complex business

1Corresponding Author E-mail: junaidarshad@uet.edu.pk

Phone no.: 0092-42-99029260;

applications are now being delivered over the web. More and more people are using web

every day. Many social networking sites have emerged as a result of this rapid growth. As

more and more data (both secure and un-secure) is available on the net, it raises a serious

concern about the security of cloud computing, social networking and other websites in

general. Cyber criminals have become highly effective in stealing data and getting away

with it, which makes organizations and businesses around the world more and more

vulnerable to cyber crime attacks. Attackers have invented new ways for attacks to

exploit vulnerabilities in websites and user confidential data. In this threat climate of

attacks, cross sites scripting-(XSS) has got more attention in the recent scientific research

(Florian, 2007). XSS attacks are on the top rank for affecting security in the current

internet era. These attacks affect user's confidential and sensitive information. Besides

these, users are defrauded, authorization schemes are exploited and many more. These

attacks have targeted Facebook, LiveJournal, MySpace and Orkut etc (Louw et al., 2009).

Many private websites providers, companies and governmental institutions use open

source web applications that are also a part of the web site. A web application assembling

pages contain information in it and an attacker can gather this information from various

sources. Current web applications allow the introduction of malicious contents to be

executed into the client’s web browser that is then served to malicious user. The most

important way to gather information is through the interaction with the web pages.

Mostly the primary source to retrieve information is a database that is requested by the

user (Florian, 2007). In cross-site scripting attacks, the web application does not do any

validation for this information provided by the malicious user and without any filtering

inserts this malicious code into web page’s output. The web browser starts executing the

malicious content and the sensitive data is accessed by malicious code and information is

provided to attacker (Figure 1). Broadly speaking, XSS is a method to inject the

unauthorized script code in the web page, causing the script to be executed on a victim’s

web browser.

Figure 1: XSS Attack Description

User

Request

Attacked Site Attacker’s Site

XSS

Input

2. Literature Survey

Cross site scripting is a malicious code injection vulnerability which has been found

in several web applications (Elad, 2010). Hackers generally use this to control a user’s

session within the website. The major reason of XSS vulnerabilities is due to the

improper validation of user input by the server and then sending back this invalidated

input to the user in some exploitable form. XSS is an application-layer web attack

technique exploit by malicious hacker. This attack commonly executes scripts on the

client-side’s browsers rather than on the server side. It has become a high threat caused

by the internet security weaknesses of client-side scripting languages. The main idea

behind the XSS attacks is that according to the desire of malicious user, client-side

execution of a web-application is done.

The failure of a site to validate the server’s response causes XSS vulnerability. Web

server sends his output to user’s web browser having malicious content and it is the core

of XSS attacks. The malicious script is executed and returns all sensitive information

(Joaquin, 2006). The detail analysis of XSS exploits in different cases shows how the

web technology is getting loop holes to make applications more unreliable and insecure.

Web results reveal many aspects of this exploit that how they target the large-scale

corporation websites. Another major reason of this kind of exploit is HTML and

JavaScript. This vulnerability introduces the malicious code on a website that is then

served to the users. These attacks are highly ranked in making websites vulnerable. All

the sensitive information is fetched using such attacks. XSS can be further explained by

various examples. A basic example in which hacker injects his malicious script is online

banking site URL and as a result user is met with a fake but identical page. A script is

executed in client’s browser to confine the cookie of user by malicious page and that

cookie is now transferred to the hacker (Jovanovic et al., 2006). Many defense

approaches have been used in past, some of these are briefly described below:

2.1 Content Filtering

Using this mechanism, application detects and eliminates all the malicious code in the

user’s request and then this filtered information is sent to web browser. Another name for

this technique is sanitization. This potentially removes the malicious data from user input.

Filtering mechanisms are applied after the input is read by the web application and then

this filtered output is sent to the client’s browser where it is being displayed to the

requested user (Louw et al., 2009).

2.2 Browser Collaboration

In this defense mechanism approach, application collaborates with the browser to

indicate the scripts which are authorized in the web page and which are not, so that the

browser can only execute authorized pages to avoid the XSS attacks (Louw et al., 2009).

2.3 XSS-GUARD

In this technique, a new framework has been designed against XSS attacks on the

server side. It works as an intelligent agent which learns a set of scripts dynamically that

a web application is expected to generate for any HTML request. This approach identifies

the malicious scripts and then these scripts are removed from the server’s generated

output that is not intended by the web application by means of a robust mechanism (Bisht,

2008).

2.4 Gateway Method

In this technique, a gateway is used at the server side to prevent the reflected XSS and

request forgery attacks. Suggested Gateway at the server side protects website and all of

its pages against XSS attacks. It stills functions normally while not being attacked. The

correctness of this approach has been proved using a software model checker.

2.5 Data Checking at Client Side

In this technique, a track of sensitive information in the web browser is kept and this

solution defends to stop the XSS attacks on the client side. If hacker attempts to steal and

transfer the sensitive information, the user can decide whether hacker’s action should be

allowed or not. As a result, the user has an additional protection layer for their

confidential information and browsing the internet and it does not solely depend on the

security of the web application (Vogt et al., 2007).

2.6 X-Hunter

X-Hunter is a tool that takes input a ‘web trace’ and scans this input for identifying

possible XSS exploits. This tool is not able to provide any defense mechanisms against

attacks both in web applications and browsers. It is designed for processing and scanning

thousands of URLs given as input. The output of this tool is the XSS exploits isolation in

the given input. X-Hunter shows that how real XSS exploits look like and what are the

triggering points of these attacks in the web browsers (Elias et al., 2010).

3. Proposed Solution

We have proposed some techniques for the detection and prevention of XSS. They

have been briefly described below:

3.1 Unique Identifier Method

In this technique a unique id is assigned to each request for a web page. When a

malicious user sends a request to web server having malicious code, it does not have that

unique id and its validation fails on server side and no malicious code is executed in

client browser and in this way XSS attack can be avoided. As a result the web browser

fetches data/code (usually written in HTML and/or another language) without having any

malicious code from web servers and then displays it. This unique identifier method can

be further explained by a communication between a client and server and Table 1

presents the comparison of proposed Unique Identifier Technique vs. conventional

technique. User requests to server for a web page. If Id attached to the request is validated

and matched then server would respond successfully and requested web page is sent to

user. In reverse case a warning message is sent to user “Warning!!! Requested page has

malicious code in it”.

Case 1: ID is matched

Client Request:

Connection: open

GET /mainpage.html HTTP/1.1

Host: www.xss-site.com

Server Response:

HTTP/1.1 200 OK

ContentType: text/html; charset=UTF-8

ContentLength: 538

Date: Fri, 21 Nov 2011 21:31:21 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

LastModified: Wed, 31 Oct 2010 23:10:51 GMT

Unique Id: Matched

AcceptRanges: bytes

Connection: close

Warning Message!

Case 2: ID is not matched

Client Request:

Connection: open

GET /mainpage.html HTTP/1.1

 Host: www.xss-site.com

Server Response:

HTTP/1.1 200 OK

ContentType: text/html; charset=UTF-8

ContentLength: 538

Date: Fri, 21 Nov 2011 21:31:21 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 31 Oct 2010 23:10:51 GMT

Unique Id: Not Matched

Accept-Ranges: bytes

Connection: close

Warning Message!

Table1: Unique Identifier Technique vs. Current Technique

 Proposed

System

Current

Technique

Dynamic

Unique key is

generated at

runtime

No

Secure More Secure Less Secure

Time

More time is

taken to match a

request

Less time

Human

Readable
No No

Support Server side Sever side

Filtering No Yes

3.2 Information Mapping Method

The Information Mapping Method is a systematic approach for identifying,

categorizing and interrelating request. In this technique an information map is placed on

server side. When a user requests from server, his request is totally mapped on server side.

If request is matched with information map present on web server, response is sent to the

user. When a hacker inserts his code to the request, it is modified and when it comes

across for matching on server it fails and a warning message is sent to the user as shown

in Fig. 2 and Table 2 presents the comparison of proposed Information Mapping Method

vs. conventional technique

3.2.1 Information Mapping Algorithm

We have developed an algorithm for request matching with information map. All the

requests have been placed on the server in the information map. When a request comes in,

server will match that request against all the request patterns defined in information map,

according to the following precedence:

• Exact matches

• Suffix matches

• Prefix matches

• The longest match, if multiple request patterns get matched.

Figure 2: Information Mapping between Client and Server

Table2: Information Mapping Method vs. Current Technique

Proposed

Technique

Current

Technique

Database

Required
Yes No

Secure More Secure Less Secure

Time

More time is

taken to map

a request

Less time

Human

Readable
No No

Support Server side Client side

3.3 Request Encoding

In this technique, client request is sent in encoded form. Encoded scheme is applied

on the request using dynamic method. 1st character of the request will tell about encoding

scheme but the remaining would be encoded using that encoding scheme (Figure 3). The

attacker will not be able to detect encoding method and hence his request will be

discarded. When a web page is requested through the means of Hypertext Transfer

Protocol (HTTP) from web browser, encoding scheme is applied on run time. The request

1st character shows which encoded technique has been applied and all other remaining

Application Server

Server Side

Map Server

Data Server

RDBMS

Web Server
Browser

Client Side

characters would be encoded using that encoded method. And on the server side, it is

decoded first and then server depending upon the requested URL, locate that file in its

file system. This file can be a program or a regular file. On the other phase, the server

based upon its configuration run the

program and sends its output as the required

page.

Figure 3: Encoding/Decoding Process

3.4 Request XORING

Method 1: In this technique, a XOR based character is sent at the end of each request.

Since each data transmission in the computer is carried out in the form of bits or bytes. A

request is also composed off bytes. When a client web browser sends request for a page,

request 1st byte is XORED with the second byte and second with the third and so on. The

resulting XORED byte is placed at the end of each request. When a malicious user tries to

inserts his code he is unaware of this method and when server checks for the last XORED

byte in the hacker’s code, it fails. And in this way, XSS attacks can be avoided.

For example, the request in byte form is ‘01010111 01101001 01101011 01101001’ can

be encrypted as follows:

Request: 01010111 01101001 01101011 01101001

Xoring of 1st and 2nd byte: 01010111 01101001

Result (R1) = 00111110

Xoring of R1 and 3rd byte: 00111110 01101011

Result (R2) = 01010101

Xoring of R2 and 4th byte: 01010101 01101001

Result (R3) = 00111100

R3 (XORED character) is placed at the end of the request, now request sent is:

Request after Xoring: 01010111 01101001 01101011 01101001 00111100

Method 2: In this technique, a key is generated at run time and each byte of request is

XORED with that key. When a hacker tries to inject his code, he is does not know about

dynamically generated key and unable to insert his malicious code. This is another way to

avoid XSS attacks.

For example, the request in byte form is ‘01010111 01101001 01101011 01101001’ can

be encrypted as follows:

Request: 01010111 01101001 01101011 01101001

Dynamically generated key is: 11110001

Result after Xoring is:

01010111 01101001 01101011 01101001

11110001 11110001 11110001 11110001

= 10100110 10011000 10011010 10011000

3.5 Script Mapping Method

In this technique, user’s request is sent to server and execution of request is decided

on runtime whether to execute it or not. For example if a user requests for a page and

hacker injects his malicious code to the request to hack the session or cookie of that

particular user, response is sent to client’s browser and browser decides to execute it or

not.

HTML Browser Parser: Here we present a proposed HTML browser parser which

would parse the request for making decision whether to execute it or not. The primary

goal of this parser is to indicate that how arbitrary data is parsed through browser.

To further illustrate this scenario malicious data is passed through the client’s browser

using HTML interpretation process. The following Fig. 4 shows that HTML input

(arriving through path A) flows through the web browser as it is parsed and interpreted.

Browser’s HTML parser and lexer process the HTML code and produce a parse tree. In

next phase i.e., document generation stage, Input is a parsed tree and this input is given

via path B. In this phase, web content described by parse tree are stored and interpreted.

After this stage interpreted web contents are submitted to JAVA interpreter for execution

via path C. This JS parse tree is submitted to via path D to javaScript Runtime

Environment for execution. Our approach uses low-level Document Object Model (DOM)

primitives small set that are well documented and all JavaScript-enabled browsers

support it. DOM APIs are supplied with both instructions and data via path E. Browser’s

DOM implementation constructs the un-trusted HTML parse tree and provides to the

document generator through the final transition R.

Figure 4: Generalized Browser’s HTML Interpretation Process

4. Conclusions

The increasing use of web paradigm is introducing new security threats to the

applications and users. Web developers should implement construction frameworks,

programming models and secure coding practices to secure the web sites and free of

vulnerabilities. At the other end attackers continue to search new ways to exploit web

applications. These attacks have been developed to affect important critical systems in

industries. In this research paper, we have explained XSS attacks and analyzed that how

much great risk is involved in cross-site scripting vulnerabilities on a web application.

Currently many solutions have been proposed using interesting approaches to avoid XSS

attacks. But these solutions are not so much efficient and do not provide enough security.

We have concluded five more efficient techniques for XSS-attacks prevention. We

believe that our proposed techniques are more scalable than other proposed solutions.

Our proposed techniques are the one that prevents cross-site attacks to its maximum

extent and has the potential for real world deployment given its performance

characteristics. We have described the proposed techniques in detail and another

contribution is the thorough analysis of the solutions and the system as a whole. We have

exposed that how to deploy our proposed techniques for several web applications. They

are efficient for a large number of web application and we believe it should be part of

best practices. Most importantly, usability of the web sites does not get any hard impact.

References

Bisht, P., (2008), XSS-GUARD: Precise Dynamic Prevention of Cross-Site Scripting

Attacks, Lecture Notes in Computer Science.

Elad, E., (2010), Flash Security, AdvancED Flex 4.

Elias A., Antonis K., and Evangelos P. Markatos, (2010), Hunting Cross-Site Scripting

Attacks in the Network, In Proceedings of the 4th Workshop on Web 2.0 Security &

Privacy (W2SP), Oakland, California.

Florian, K., (2007), Simple cross-site attack prevention, Third International Conference

on Security and Privacy in Communications Networks and the Workshops –

SecureComm.

Joaquin Garcia-Alfaro, (2007), Prevention of Cross-Site Scripting Attacks on Current

Web Applications, Lecture Notes in Computer Science.

Jovanovic, N., Kirda, E., and Kruegel, C., (2006), Preventing Cross Site Request Forgery

Attacks, Proceedings of IEEE International Conference on Security and Privacy in

Communication Networks.

Louw, M.T., and Venkatakrishnan, V.N., (2009), BluePrint: Robust Prevention of

Cross-site Scripting Attacks for Existing Browsers. In Proceedings of the IEEE

Symposium on Security and Privacy.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna, G., (2007),

Cross-Site Scripting Prevention with Dynamic Data Tainting and Static Analysis, In

Proceeding of the Network and Distributed System Security Symposium (NDSS’07).

