
Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Reverse Object Oriented Design Methodology (R-OODM)

Muhammad Usman Ghani Khan, Mobina Zafar, Khadim Hussain Asif

Junaid Arshad, and Abad Ali Shah

Department of Computer Science and Engineering,

University of Engineering and Technology, Lahore Pakistan

Corresponding Author: usman.ghani@kics.edu.pk

Abstract

Software design plays a vital role in better understanding of the software system and its architecture. It also

provides help throughout the software development life cycle and afterwards in its maintenance as well. Web

applications have been emerging enormously and subjected to continuous changes due to high competition in

the market. But unfortunately, most of the web applications are implemented without producing any formal

design documentation for its subsequent maintenance and evolution. Therefore, the maintenance of these

applications becomes a challenging problem as the complexity of the web application grows. The reverse

engineering techniques has been used to support effective web application maintenance. We have proposed a

Reverse Object Oriented Design Methodology (R-OODM) that extracts the design of web application using

design phase models of OODM [1][15], based upon water fall model. A tool has also been developed for

implementation of this reverse object oriented design methodology.

1. Introduction

The Web and its applications have become the most powerful medium of communication for

commercial domain of all kinds. Most of the Web applications are not well structured and properly

documented because during their development the basic software engineering principles are not

practiced, hence maintainability and reusability of these applications become difficult and not

manageable. Therefore, the maintenance of such applications becomes a challenging problem, and

this problem becomes more complex as the complexity of web applications grows. Also, in most of

cases, the design documents of web applications are not available because those applications are not

developed by following the principles of software engineering and a proper software development

technique is not used in their development. To address these situations the reverse engineering can be

one possible solution to support effective web application maintenance [2].

In this research, we propose a technique to extract design of web applications. The extraction of

design of web applications makes maintenance easy and effective. It covers the deficiencies and deals

with challenges that the existing reverses engineering techniques and tools that are facing today [3].

Main objective of this technique is to extract design of web application by following the rules of web

design methodology OODM [15].

Problems:

mailto:usman.ghani@kics.edu.pk

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

i) During the development of most of the web applications no software development technique

has been followed, hence reverse engineering becomes difficult.

ii) In the development of many legacy web applications the structured approach has been

followed, any object oriented software development technique has not been followed.

Therefore, it becomes difficult to extend functionality of the applications, and their

maintenance became difficult [4].

iii) The existing reverse engineering techniques for the web applications and tools based on these

techniques are applicable only to those web applications that have been developed using the object

oriented approach.

iv) The input of our proposed technique is XML+HTML and output is complete design of web

application in the form of web development technique termed as Reverse Object Oriented Design

Methodology (R-OODM).

Considering all above mentioned problems and issues we have propose a technique that extracts

design from source code of web applications. Using our proposed technique, we have developed a tool

that extracts design of web application.

1.1 Benefits

Our proposed technique will facilitate us with followings benefits.

i) The proposed technique is applicable for both types of web applications, structured and object

oriented too. A structured based web application is transformed into object oriented format, than is

parsed by proposed technique to extract its design. It is done using XML- Schema translation by

mapping XML-Schema into object oriented database. For this mapping object graph generally

termed as components graph is extracted from given XML schema [7].

ii) A dynamic analysis has been performed by this technique to capture the dynamic features and

functionalities of web design.

iii) Design extraction process is in the form of development methodology. We have used Object

Oriented Design Methodology OODM [15] that has been transformed into Reverse-Object Oriented

Design Methodology (R-OODM).

iv) The remainder of this research work is organized as follows. In Section 2, a detail and in-

depth literature survey is given and a comparison of the existing reverse engineering techniques is

also given. Section 3 describes the proposed work. In Section 4, we presented case studies. The result

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

analysis and discussion is given in Section 5. Section 6 describes the conclusion and future work of

the research work. A complete list of references is provided at the end.

2. Related Work

Reverse Engineering is defined as a process of analyzing a subject system at high level of abstraction.

Reverse engineering can be used in following situations.

 If the Source code is already available for the software, but high level aspects of programs

are not valid or well documented.

 If no source code is available; an effort to discover one possible source code is termed as

reverse engineering.

Reverse engineering is a knowledge-intensive and an iterative process. Reengineering is the

examination and alteration of a legacy system to reconstitute it in a new form and the subsequent

implementation of the new form.

Before going into depth of the reverse engineering process we must learn some basic concepts that

will be helpful in giving us a clear picture of the process

2.1 The reverse engineering process

The figure below gives a brief description of where the reverse engineering lies and how it works and

helps in re-engineering and re-designing the software system [5].

Figure 2. Reverse Engineering in action [15]

It takes original program as input and its source is translated for reverse engineering and structure

improvement process. Reverse engineering process access the program documentation and transform

into program modularization, at the same level program structuring process return an improved

structure which ultimately translates to the modularization level. After this modularization, data

engineering is performed with the help original data which return re-engineered data [6].

Reverse engineering is a process capable of enabling us to re-engineer and re-design a software system.

It is a very broad term on high end it includes design recovery and on the other end recompilation and

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

disassembly but the real meaning of reverse engineering is to get the understanding of something that is

missing in the current working system that can be either source code, documentation or the software

design [6]. It is an iterative process that can be started at or from any step of the software development

life cycle to achieve and get its pre-requisite product or design [7].

2.2 Design extraction process

The process of design extraction from the source code is an iterative process. The following figure is a

try to describe the reverse engineering process completely in a three step iteration process. The process

can be well defined with the help of the following diagram:

Figure 2.The Engineering Process

The figure 2 describes that how the process leads to achieve software design out of the software

system.

The process of extracting design from the source code may differ from various techniques as there the

era and techniques of software engineering have been varying from time to time from the classical

approaches to web based approaches, from classical UI and console based applications to Object

Oriented web designs [8]. So with the difference of the design methodologies the outputs and inputs for

these methodologies also change, following figure gives a brief description of the mentioned scenario:

Figure 1. Inputs and Outputs of Different S/W Design Methodologiees

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

2.3 Reverse Engineering Tools and Techniques

While going through the studies of different types of techniques have come into our studies some of the

mentioned techniques are as following:

a) PINOT

Pattern Interface Recovery Tool (PINOT) detects all the Gang of Four (GoF) patterns that

have concrete definitions driven by code structure or system behavior. The tool is faster,

more accurate, and targets more patterns than existing pattern detection tools [14].

b) Two Phase design

The design consists of two different phases that consist of kind of phases i) going through

the code of the system and ii) identifying the main methods and operations within the

system. Then this technique uses recursive functions to identify and make a system diagram

in the end [15].

c) Manual Reverse Engineering (BOS/X)

This is the system that is very unique and goes through reverse engineering process

manually. This technique requires the user to go through the system manually line by line

and by following the systems calls and then determine the main components of the whole

system[13].

2.4 Reverse Web Development Techniques and Tools

All distinguishing features of existing reverse web development techniques and tools, brief

description of each technique and tool is given bellow:

 ReWeb: In [10], A tool take traditional source code analysis of Web applications as input and

represent the Web application as a graph structure and undertaking various types of analysis

such as reachability, flow and traversal analysis. ReWeb can download and analyze Web

applications. [5].

 TERESA [4] is a source code statistical analysis tool that produces a task-oriented model of a

Web application.

2.5 Comparison of existing Reverse Engineering Techniques and Tools

The Table 1 gives a very clear idea on how the different techniques support various parameters and

what is lacking in all of them.

Table 1. A Comparison b/w the All techniques

Tool Object

Oriented

Classic

Approach

Web

Applications

Design

Patterns

Language

Specific

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

PINOT     

BOS/X     

Cliché mining

techniques

    

Rationale Graphs     

2 Phase design     

ReWeb     

TERESA     

Parameters that have been identified for comparisons are object oriented approach, classical approach,

web application, design patterns and language specific.

PINOT technique used object oriented development methodology rather classic approach. This

technique does not work for web applications. It Support design patterns but it is language specific

and support JAVA, AWT, JHotDraw, Swing and Apache Ant [9].

BOS/X technique also termed as manual reverse engineering comprises combination of object

oriented and classical approach. It’s not design for web applications. It does not support design

patterns but it is language independent.

Cliché mining techniques used object oriented approach. This technique does not support web

applications and design patterns. It’s is language specific [11].

Rationale Graphs technique used classical approach but does not support web applications. It also

does not support design patterns. It’s language specific too.

2-Phase design technique used classical approach but does not support web applications. It also does

not support design patterns. It’s language specific too.

ReWeb technique does not support object oriented or classical approach rather it uses web

development approach. It does not support design patterns. But it is language specific.

TERESA characterize same features as capture by ReWeb.

3. Proposed Design Extraction Technique

OODM [15], is the first object oriented design methodology for web applications. It covers all

principles of software engineering and software development life cycle.

We have proposed a tool for reverse web engineering by following reverse object oriented design

methodology named as R-OODM.

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Our propose work maintain the web application at design phase of OODM [15].

R-OODM tool involve following steps for deign extraction of a web application.

Step-1: It takes input of source code in form of xml and any server scripting language.

Step-2: DTD (Document Type Definition) is extracted from source code.

Step-3: Components of design phase of OODM [15].

Step-4: Algorithm for each component to extract design node, that fall in relevant component

model.

Step-5: Integration of all components to sum up the design.

3.1 Design Phase of OODM [15]

Design phase of OODM [15] involves key features like presentation of information that how it’s

presented to user, user navigation paths, implementation of each operation and user interface.

Design phase mainly composed of four models, Component model, Navigational model, Operation

portioning model and User interface model [12].

Component model defined a set of related multimedia attributes of a page class. Each web page

consists of components and each component is further comprising the set of multimedia attributes.

Navigation model design the information structure of a Web Application. This information structure

provides an orientation and guidance to the users while navigational through Web pages.

The processing unit Building Operation-Partitioning Model further is divided into four processing

units, namely Building Object-Interaction Graph, Building an Algorithmic Form for Operations,

Partitioning Operations into Client and Server Operations, and Completing and Refining Operation.

User interface model deals with the designing of user’s perception and interaction with web

application. The design process first determines user interface elements (for example, pages, forms,

frames, colors, command buttons, bars, and check boxes) for the objects, e.g., page-classes,

components, navigation types, operations, and navigation primitives [11].

3.2 Outline of Reverse Object Oriented Design Methodology(R-OODM)

Table 2. Outline Of R-OODM

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Development Phase Input Output Output Components Nodes

Design Phase

Building Component

Model

Document Type definition

(DTD) in form of

Information Model

Component

Model

Component Nodes and

component access sequence

nodes

Building Navigation

Model

Component Model + User

navigation model in form of

DTD

Navigation

Model

Local Navigation Nodes, Global

Navigation Nodes, Menu

Navigation Nodes

Building Operation

Model

DTD in form of operation

Model

Operation

Partitioning

Model

Client and server operation nodes

Event handler

Building User Interface User Navigation Model +

Component Model +

Navigation Model +

Operation Model

User

Interface

Model

Component User Interface,

Navigation primitive user

interface,

Form User Interface Element,

Presentation Nodes

R-OODM comprises same design phase model as OODM [9][15]. It extract these model at design

phase. R-OODM adds value to existing OODM [15] by introducing reverse engineering technique.

For extraction of design, this technique take DTD (Document Type Definition) of whole schema as

input and out all design phase models.

Algorithm has been written for each design phase model which helps to extract node of each model.

3.3 XML Extraction Algorithm

XML extraction algorithm has been written to extract data nodes from the source code (XML

schema). As we are proposing reverse engineering methodology, input of this algorithm is source

code and out will be the data nodes and associated values like node type attributes, depth and

content.

3.3.1 Output File Layout

This table describes the output file format. Output nodes will be categories into different models

based upon its values.

Document node and element node are two basics types of nodes. Document node does not hold any

attribute, its depth level is 1 and it contains inline nodes. Rest of the schema mainly consists of

element nodes. Element node hold optional attributes, there can be no attribute or one attribute or

more than one attributes. Depth of element node is equal or greater than two. Content of element can

be text, image, form etc.

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Table 3. Output file Layout

Node Type Attribute Depth D Content

Document Node DOCTYPE Nil D=1 Inline Nodes

Element Node ELEMENT Optional D>=2 Text, Image, Form etc.

With the help of below algorithm we come up with DTD (Document Type Definition). Two steps of

information processing, mentioned in section 3, have been done up till now. At third step, components

of design phase of OODM [15] are considered. Algorithm for each component is defined to extract

the relevant set of nodes.

InputFile= XML_file ;

OutputFile=DTD_file; /* All nodes, their attributes, depth and text will be written in this file */

Processing[]; /* For xml manipulation */

Output[]; /* For output */

Operation XMLExt: GetExtractionXMLDOC(inputFile):outputFile

Check to see if file open (1)

If yes then

Parse the file (2)

If successfully read nodes then

 Write contents into output file (3)

 If file opens then

 Return successful output

 Else

Return an error message “could not open output file”

Else

Return error message

Else

Return a error message “could not open XML input”

Method XMLExt :Read(inputFile) :Array

If user read valid xml file then

Return data

Else

Error Message

Method XMLExt :Parsing(source) :Array

If source is not empty then get nodes (2.1)

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

 If yes then

Get the depth, attribute and contents of the node

Else

Error Message

Else

Error Message

Method XMLExt :getNode(Source) :Boolean

If source not empty

Return true

Else

False

Method XMLExt: Write (outputFile, Output) :Boolean

If Output [] is not empty and contain valid data and file open successfully

Return true

Else Return false

3.3.2 Proposed DTD structure

Before we start individual component model extraction Document type definition structure is

describe below. XML schema starts with root element and descended by child elements.

Figure 3.4. Propose DTD Structure

Component Model Extraction

Procedure1: Component Model

Input: DTD

Output: Component nodes (Component Model)

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

NodesCollection [] =input;

Check for each node

If (DepthOf (Node) ==1)

 Attribute=AttributeOf(Node);

 If(AttributeOf(Node)==SRC OR

Node is parent Node

Else

Continue

If (ContentOf(Node)! =””)

Content Node found

else

Continue

Navigational Model Extraction

Procedure 2: Navigational Model

Input: DTD

Output: Navigational Nodes (Navigational Model)

Start Procedure:

NodesCollection [] =DTD

NavigationNode([0]=>UL ,[1]=>A,[2]=>LI)

Attributes[]=All Attribute Found

i=0;

While(NodeCollection[i])

{

If(AttributOf(Node)==HREF AND ValueOfAttribute(Node)!=””)

{

OutPut[i]=Node[i];

}

}

end while

End procedure:

Building User Interface Model (Presentation Model) Extraction

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Procedure 3: Building User Interface Model (Presentation Model):

Input: DTD

Output: Presentation Nodes (Presentation Model)

Start Procedure:

NodesCollection [] =DTD

Attributes[]=All Attribute Found

i=0;

While(NodeCollection[i])

{

If(AttributOf(Node)==STYLE OR AttributOf(Node)==WIDTH OR AttributOf(Node)==HEIGHT OR

AttributOf(Node)==CLASS)

{

OutPut[i]=Node[i];

}

}

end while

End procedure:

Operation Partitioning Model Extraction

Procedure 4: Operation Partitioning Model:

Input: DTD

Output: Operation Partitioning Nodes (Operation Partitioning Model)

Start Procedure:

NodesCollection [] =DTD

Attributes[]=All Attribute Found

i=0;

While(NodeCollection[i])

{

If(AttributOf(Node)==OnClick() OR AttributOf(Node)==SCRIPT OR AttributOf(Node)==OnSelect() OR

AttributOf(Node)==onChange())

{

OutPut[i]=Node[i];

}

}

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

end while

End procedure:

After defining procedures few rules have also been defined to grouping the nodes.

3.4 Grouping of Nodes

3.4.1 Define Rules for Grouping

According to our purpose algorithm, few rules have been extracted to define nodes.

1. Depth

Depth defines the node type.

Depth 0 means document node, depth 1 means parent node and depth 2 or greater than 2 means child

nodes.

2. Node Type value

Values of the node predict node type according to DOM manipulation rules.

Main Types of nodes

XML document consists of many syntax structures that do not contribute towards XML content. But

they provide interface to access element data.

 Structural node

DocumentType, Processing Instruction, Notation, entity, attribute, CharacterDataType,

CDATASectioon

 Content Node

Element Node, Text node

Extracted nodes are needed to classify.

I. Navigational Nodes

 Hyperlink node, Menu node, Index Node and Guided Node

II. Representation Nodes

CDATA Node, Font Node, Formatting Nodes

III. Behavioral Node

a. Attribute Nodes

3.5 Components of R-OODM:

3.5.1 Component Model

A set of related multimedia attributes of a page-class is referred to as a component.

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

 Content nodes come under the heading of component model.

3.5.2 Building Navigation Model

The main function of this unit is to design the information structure of a web application. This

information structure provides an orientation and guidance to the users while navigational through

Web pages. This model include the navigational nodes

3.5.3 Building Operation Partitioning Model

The processing unit Building Operation-Partitioning Model further is divided into four processing

units, namely, Building Object-Interaction

Graph, Building an Algorithmic Form for Operations, Partitioning Operations into Client and Server

Operations, and Completing and Refining Operation Partitioning Model. Structural nodes involve in

this model.

3.5.4 Building User Interface

This processing unit deals with the designing of user’s perception and interaction with a web

application.

The design process first determines user interface elements (for example, pages, forms, frames,

colors, command buttons, bars, and check boxes) for the objects, e.g., page-classes, components,

navigation types, operations, and navigation primitives.

Presentation nodes come under this heading.

4 Case Studies

1. Case Study : Language and learning Online(LALO)

2. Case Study: Book Store

4.1 Case Study 1: Language and learning Online(LALO)

Language and learning online is a XML-based web application of Monash University, which provides

online learning facility for students. Students can improve their writing, reading and speaking skill.

Its data flow diagram and trace of XML source is given below.

4.1.1 Trace of Algorithm for website of Language and learning DTD:

Node Type Node Title Attribute Attribute

value

Depth Content

Document

Node
DCOTYPE Home Nil

Nil
0 Nil

Root Node HTML HTML XMLNS http://www.w3

.org/1999/

xhtml

 XML:LANG en
 LANG en
Parent Node HEAD 1

http://www.w3.org/1999/
http://www.w3.org/1999/

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Child Node META HTTP-

EQUIV Content-Type

2

 CONTENT text/html;

charset=utf-8

 TITLE

2 Language

and Learning

Online

 BASE HREF http://www.mo

nash.edu.au/lls

/llonline/

2

 LINK REL stylesheet 2

 HREF assets/styles/lls

-styles.css

 TYPE text/css

 MEDIA all
Parent Node BODY 1
Child Node DIV ID accessibility 2

 A HREF javascript:acce

ssQueryString(

);

3 Accessible

version

 DIV CLASS spacer 2
 TABLE WIDTH 100% 2
 BORDER 0
 CELLSPACI

NG 1

 BGCOLOR #000000
 SUMMARY Layout for

site-wide

navigation

DIV

 ID search
 STYLE float: right 8
 FORM NAME search-form 9

ACTION search.php

 METHOD get
 LABEL FOR search-field 13 search field
 INPUT TYPE text

NAME q

ID search-field

CLASS searchfield 13
 DIV ID breadcrumbs 3
 Home
 DIV CLASS header 2
 UL 3
 LI ID current 4
 A HREF index.xml 5 HOME
 LI 4
 A HREF reading/index.

xml

5 Reading

 LI 4

 A HREF writing/index.

xml

5 Writing

 LI 4

 A HREF speaking/index 5 Speaking

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

4.1.2 Design Phase Model for Case Study 1

4.1.2.1 Component Model

 Home

 HTML

 HEAD

 META

 TITLE

 BASE

 LINK

 SCRIPT

 BODY
4.1.2.2 Navigation Model

Attributes for navigation model:

 HREF, UL, LI, A

4.1.2.3 User Interface Model

 Table, TD, TR, Span, Strong., H2

 Size, Width, Height, Class, Style, font, color, background, background color, border

 IMG

4.1.2.4 Operational Partitioning Model

javascript:accessQueryString();

4.2 Case Study 2 : Book Store

This case study is a XML document of a book store, which keeps a catalogue of books. Each books

has its detail, book title, price, author name, publishing date and description. Trace of its Documents

Type Definition (DTD) is given below.

Table 4.2. Trace of Algorithm for Book Store

Node Type Node title Attribute Attribute

value

Depth Content

Document

Node

DCOTYPE Books Nil Nil 0 Nil

Root Node ELEMENT CATALOG Nil Nil 0 Nil

.xml

 LI 4

 SPAN STYLE float:right 6

 IMG SRC assets/images/l

ogo150.gif

8

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

ParentNode ELEMENT BOOK ID bk101 1 Nil

Child Node ELEMENT AUTHOR Nil Nil 2 Gambardella, Matthew

ELEMENT TITLE Nil Nil 2 XML Developer's Guide

ELEMENT GENRE Nil Nil 2 Computer

ELEMENT PRICE Nil Nil 2 44.95

ELEMENT PUBLISH_DATE Nil Nil 2 2000-10-01

ELEMENT DESCRIPTION Nil Nil 2 An in-depth look at

creating applications

with XML.

ParentNode ELEMENT BOOK ID bk102 1 Nil

Child Node ELEMENT AUTHOR Nil Nil 2 Ralls, Kim

ELEMENT TITLE Nil Nil 2 XML Developer's Guide

ELEMENT GENRE Nil Nil 2 Computer

ELEMENT PRICE Nil Nil 2 44.95

ELEMENT PUBLISH_DATE Nil Nil 2 2000-12-16

ELEMENT DESCRIPTION Nil Nil 2 A former architect

battles corporate ….

4.2.2 Design Phase Model for Case Study 2:

4.2.2.1 Component Model

Nodes that are classified as component model:

Books, Catalogue, Book, Author, Price, Publishing Date and Description

Content and attributes of all nodes are included in this model.

4.2.2.2 Navigation Model

 HREF

4.2.2.3 User Interface Model

List of attributes that comes under user interface model is provided below:

WIDTH/HEIGHT, FONT, COLOR and ID.

4.2.2.4 Operation Partitioning Model

No operation partitioning model

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

5 Results and Analysis

In this section, we have summarized our results of case studies. Trace of algorithm and design phase

model has been provided in previous section.

Now the models of design phase of object oriented design methodology- OODM [15] are compared

and analyzed for each case study.

Table 5.1. Analysis of case studies

Case

Study

No.

Component

Model

Navigation

Model

User Interface

Model

Operational

Partitioning Model

Status %

Weight

Status %

Weight

Status %

Weight

Status % Weight

1 Yes Full Yes Full Yes Full Yes Full

2 Yes Full Yes Full Yes Full No Empty

In the design phase, the presentations of information to users, user navigation paths, implementation

of each operation, and user-interface elements are designed.

5.1 Design Phase of R-OODM

Design phase of R-OODM consists of four stages, same like OODM. Main processing units are

Building Component Model, Building Navigation Model, Building Operation Model and Building

user interface model. In next sections, we describe these four units.

 In this section we will extract the design of Language and Learning Online (LALO) and Book

Store describe in section 4.1 using DTD extracted from XML source code.

5.1.1 Building Component Model

We have extracted components nodes in section 4.1.2.1. For building component models, these

component nodes are basically the meaningful and logical units that made up pages-class. These

logical units are termed as components. Each component contains related multimedia attributes that is

a part of page class, so a page class is mainly consists of components. In this section we will extract

the design of Language and learning Online (LALO) using DTD extracted from XML source code.

We have extracted components nodes in section 4.4.2.1 for building component models. Its page class

detail is given in below table.

The access order of these is as follows: Learner, Reading, Writing, speaking, Learning, Listening,

Grammar, and Quick Reference.

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

Table 5.2. Building Component Model for Language and Learning Online Case study

Components Multimedia Attributes Order Of Access

Learner Learner Detail 1

Reading Reading text 1

Writing Writing Text 2

Speaking Speaking Text 2

Grammar Grammar Text 3

Quick Reference Quick References 3

Learning Learning Text 2

Listening Listening Text 2

5.1.2 Building Navigation Model:

As per OODM [15], this unit deigns navigational paths that enable hypermedia navigation in web

application. These navigation paths have been divided into four categories, local, instance, global

and menu navigation. Local navigation for each component of page class is built by using building

component model. For each component, an index guided tour or local navigation is built to access

information from component. Figure shows the graphical representation of page-class Language and

Learning Online.

Figure 5.1. Graphical Representation for navigation Language and Learning Online Page-class

Local Navigation:

A user navigates through his/her profile, providing a list of options.

Global Navigation

Reading Listening
LLOL

Speaking

Learning
Home

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

A user may navigate from a learner to Listening area, from a learner to speaking area, from a learner

to writing area.

Instance Navigation

A user may navigate from a listening area to learner area, from a speaking area to learner area.

5.1.3 Building Operation Partitioning Model

 The processing unit Building Operation-Partitioning Model further is divided into some processing

units, namely, Building Object-Interaction Graph, Building an Algorithmic Form for Operations, and

Partitioning Operations into Client and Server Operations.

In our extracted design, few operations have been extracted that perform validation check and data

loading.

5.1.4 Building User Interface Model

Nodes entitle as form, style, width, color, frame, paragraph, table, table data, table row and all

navigation primitive have been collected under this user interface model.

5 Conclusion and Future:

We propose a Reverse object oriented design methodology (R-OODM), and we have developed a tool

based on this reverse object oriented design methodology that extracted design of a web application.

This reverse engineering methodology has followed the phases of Water Fall software development

life cycle model. Our proposed methodology has extracted the design of web application, by

extracting the components of design phase of OODM [15].This methodology has overcome the

deficiencies of existing reverse engineering methodology. It provides support for maintaining existing

web applications. Now with the help of this methodology, maintenance of legacy system has become

easy.

According to our result and conclusion, we have extracted three main components completely but

operation portioning partially. We are working over it to extract this component completely.

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

References

[1] Aurore, F., Jean H., Jean-Luc H.; Web Reverse Engineering: Fabrice Estiévenart1, , IEEE Explore,

2008.

[2] Irina A.; Toward the Semantic Web – An Approach to Reverse Engineering of Relational Databases to

Ontologies: Advances in Databases and Information Systems: proceedings of the 9th East-European

Conference, ADBIS 2005, Tallin, September 12-15, 2005. - ISBN 9985-59-545-9. – Tallin.

[3] Irina A., Bela S.; Reverse Engineering of Relational Databases to Ontologies: An Approach Based on

an Analysis of HTML Forms, Australia, 2004.

[4] Building ontologies from relational databases using reverse engineering methods, Computer

technologies, 2007, ISBN:978-954-9641-50-9.

[5] Girardi, C., Pianta, E., Ricca, F. and Tonella, P.; Restructuring Multilingual WebSites: (2002).Proc.

18th Int. Conf. on Software Maintenance (ICSM'02), IEEE, PP. 290-299.

[6] Antoniol, G., Canfora, G., Casazza, G. and De Lucia, A.; Web Site Reengineering Using RMM:

(2000). Proc. 2nd Int. Workshop on Web Site Evolution, PP. 9-16.

[7] Conallen, J.; Building Web Applications with UML: (1999). Addison Wesley. ISBN: 0-201-

Vol 21, No 2 (2014), JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY (JFET) Pages 60-81

61577-0.

[8] Di Lucca, G.A., Di Penta, M., Antonniol, G. and Casazza, G.; An Approach for Reverse Engineering of

Web-Based Applications: (2001). Proc. 8th Working Conference on Reverse Engineering, WCRE'01,

IEEE, PP. 231-240.

[9] Reverse Engineering: Accessed on 2014 http://www.answers.com/topic/reverse-engineering.

[10] Harris; David, R. ; Reubenstein, Howard B. ; Yeh, Alexander S. Recognizers for Extracting

Architectural Features from Source Code: Reverse Engineering, 1995., Proceedings of 2nd Working

Conference; 14-16 July, 1997. PP. 252-261. by David R. Harris’, Howard B. Reubensteint, Alexander

S. Yeh ‘The MITRE Corporation”.

[11] Lerner, M. ; Tomin Corp., Wellesley, MA ; A Process of Re-engineering Large and Complicated

Systems: Systems, Man, and Cybernetics, 1991. 'Decision Aiding for Complex Systems, Conference

Proceedings., 1991 IEEE International Conference, 13-16 October, PP. 479-485 Vol. 1 (1991).

[12] Hiroyuki Sugawara, Tsuneo Hagiwara, and Tetsuya Numajiri; Design Extraction System for Rapid

Development of Object-Oriented Switching Software: Communications, 1997. ICC’97 Montreal,

Towards the Knowledge Millennium: 1997 IEEE International Conference. 8-12 June, 1997; PP. 231-

235 (vol. 1). NTT Network Service Systems Laboratories, Tokyo, Japan.

[13] Smith, J.M.; Stotts, D. ; SPQR: Flexible Automated Design Pattern Extraction from Source Code;

Automated Software Engineering: 2003. Proceedings 18
th

 IEEE International Conference on October 6-

10; PP. 215-224 North Carolina, Chapel Hill, NC, USA.

[14] Yang, S.; Zhou, X.W.; and Zhang, M.Q.; Approach on aspect-oriented software reverse engineering at

requirements level: Computer Science and Software Engineering, 2008 International Conference on.

Vol. 2. IEEE, 2008., PP. 321-324,Dec 12-14 (2008).

[15] Shah A. OODM: An Object-Oriented Design Methodology for Development of Web Applications:

IDEA GROUP PUBLISHING, USA., ITB8759, PP. 189-229 (2003).

