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Abstract: 

 In present paper, indirect boundary element method (IDBEM) has been applied to 

calculate Hyperbolic flow past a circular cylinder in case of constant variation. The 

boundary of the circular cylinder (C.C) is discretized into constant boundary elements 

over which the velocity distribution is calculated. The calculated results are also 

compared with exact results.  
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1. Introduction 

 Boundary element method is a numerical technique used to solve the different types 

of problems today facing in science and technology. The well-known computational 

methods such as finite difference method (FDM) and finite element method (FEM) are 

very costly and time- consuming because in these methods the whole domain under study 

is discretised into a number of block-type elements, whereas in boundary element method 

the process of discretisation takes place on the surface of body. Which considerably 

reduces the size of system of equations resulting the reduction in data and that is 

perquisite to run a computer program efficiently.  In other words, boundary element 

methods are superior in several aspects to other computational methods because of their 

surface modeling approach. That is why; the complicated structures can be more easily 

modeled by these methods and are therefore preferred by engineers. The results of 

boundary element methods are more accurate and reliable than those of classical 

methods. Which establishes the fact that these methods (BEMs) are time-saving, 

accurate, efficient and economical techniques as compared to other numerical techniques 

(Mushtaq; 2008, 2009). These salient features of BEMs make them popular in 

communities of engineering and science. Such methods are essentially the methods for 

solving the partial differential equations arising in wide range of fields, e.g., fluid 

mechanics, solid and fracture mechanics, heat transfer and electromagnetic theory, 

potential theory, elasticity, elatostatics and elastodynamics, etc. as detailed in Brebbia 

and Walker, (1980). Furthermore, the area of their applications is increasing day to day. 

Boundary element methods have been classified into direct and indirect methods. The 

direct method is in the form of a statement which gives the values of unknown variables 

at the field point under discussion in terms of a complete set of the entire boundary data. 

Where as the indirect method is based on the distribution of sources or doublets over the 

boundary of the body and calculates such distribution in terms of the solution of an 

integral equation.  The IDBEM has been used for many years in the past for flow field 

calculations due to its simplicity. The first work on flow field calculations around three-

dimensional bodies was probably done by Hess and Smith, (1962 & 1967). The DBEM 

for potential flow calculations around objects was first applied in past by Morino et al, 

(1975). In recent past, the IDBEM’s have been applied by the author himself for flow 

field calculations around two- and three-dimensional objects (Muhammad; 2008, 

2010,2014). 

2. Calculation of Hyperbolic Flow past a Circular Cylinder 

 Boundary element methods are applied for both problems of exterior and interior 

flows in two dimensional space. In this case, DBEM is used to calculate the Oseen’s flow 

around a C.C using constant variation. A circular cylinder of radius  ‘a’  is held fixed in a 

uniform stream of incompressible viscous fluid flowing steadily around it and let the 

centre of a cylinder be taken as origin and  Us  be the velocity of uniform stream in the 

positive x – direction as given in figure 1(.Chwang & T.Y.Wu,1975; Shah,2008; 

Muhammad, 2014). 
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                              Figure 1: 

 

The stream function for such flow is given by 
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The magnitude of velocity is given by the relation 

 V  =  u 2 + v  2  (4) 

The equation for the indirect method in the case of a doublet distribution for the problems 
of two-dimensional exterior flow is given by  
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Now to approximate the surface of a C.C, the coordinates of extreme points on the BE’s 

are generated in a computer program as under (Muhammad, G, 2008).  

 The surface of the C.C is discretized into m elements in a clockwise direction using 

the following formula 

  k  =  [ ( m + 3 ) – 2 k ]  / m ,                           k  =  1 , 2 , ……. , m  (7) 
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Then the coordinates of the extreme points of these m elements are calculated from 
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Figure 2 

The discretization of the surface of a C.C is shown in figure2.   

The mid-node coordinates over every element are defined by the formula . 
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When all the nodal points are taken into consideration, which can be put in the matrix 

form  i.e.  

 [H]{U}={R}  

Where [H] is a matrix of influence coefficients, {U} is a vector of unknown total 

potentials and {R} on the R.H.S. is a known vector whose elements are the negative 
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values of the velocity potential of the uniform stream at the nodal points on the boundary 

of the C.C. 

Since  
 

 n
  is specified at each node of the element, the values of the perturbation velocity 

potential    can be found at each node on the boundary. The total potential Ф is then 
found, which will then be used to calculate the velocity on the C.C. 

 

 

 

 

 

 

 

 

Figure 3 

The velocity midway between two nodes on the boundary can then be approximated by 

using the formula 

 Velocity 

V  =  

k + 1 – k

Length from node  k  to  k + 1
  (12) 

The method has been implemented using FORTRAN programming with 16, 32, and 64 

constant BE’s 

TABLE (1) 

ELEMENT X Y VELOCITY EXACT 
VELOCITY 

1 -.94 .19 .39785E+00 .39197E+01 

2 -.80 .53 .11330E+01 .76729E+01 

3 -.53 .80 .16956E+01 .76729E+01 

4 -.19 .94 .20001E+01 .39197E+01 

5 .19 .94 .20001E+01 .39197E+01 

6 .53 .80 .16956E+01 .76729E+01 

7 .80 .53 .11330E+01 .76729E+01 

8 .94 .19 .39785E+00 .39197E+01 

9 .94 -.19 .39785E+00 .39197E+01 

10 .80 -.53 .11330E+01 .76729E+01 

11 .53 - .80 .16956E+01 .76729E+01 

12 .19 -.94 .20001E+01 .39197E+01 

13 - .19 -.94 .20001E+01 .39197E+01 

14 -.53 -.80 .16956E+01 .76729E+01 

15 -.80 -.53 .11330E+01 .76729E+01 

16 -.94 -.19 .39785E+00 .39197E+01 
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Figure 4: Comparison of exact and computed values over the boundary of a circular cylinder for 16 
constant BE’s. 

TABLE (2) 

ELEMENT X Y VELOCITY EXACT 
VELOCITY 

1 -.99 .10 .19699E+00 .23991E+01 

2 -.95 .29 .58339E+00 .42331E+01 

3 -.87 .47 .94738E+00 .59262E+01 

4 -.77 .63 .12750E+01 .68762E+01 

5 -.63 .77 .15535E+01 .68762E+01 

6 - .47 .87 .17724E+01 .59262E+01 

7 - .29 .95 .19232E+01 .42330E+01 

8 - .10 .99 .20001E+01 .23991E+01 

9 .10 .99 .20001E+01 .23991E+01 

10 .29 .95 .19232E+01 .42330E+01 

11 .47 .87 .17724E+01 .59262E+01 

12 .63 .77 .15535E+01 .68762E+01 

13 .77 .63 .12750E+01 .68762E+01 

14 .87 .47 .94738E+00 .59262E+01 

15 .95 .29 .58339E+00 .42330E+01 

16 .99 .10 .196998E+00 .23991E+01 

17 .99 -.10 .19699E+00 .23991E+01 

18 .95 -.29 .58339E+00 .42331E+01 

19 .87 -.47 .94738E+00 .59262E+01 

20 .77 - .63 .12750E+01 .68762E+01 

21 .63 - .77 .15535E+01 .68762E+01 

22 .47 - .87 .17724E+01 .59262E+01 

23 .29 - .95 .19232E+01 .42330E+01 

24 .10 - .99 .20001E+01 .23991E+01 

25 -.10 - .99 .20001E+01 .23991E+01 

26 - .29 - .95 .19232E+01 .42330E+01 

27 - .47 -.87 .17724E+01 .59262E+01 

28 -.63 -.77 .15535E+01 .68762E+01 

29 -.77 - .63 .12750E+01 .68762E+01 

30 -.87 -.47 .94738E+00 .59262E+01 

31 -.95 -.29 .58339E+00 .42330E+01 

32 -.99 -.10 .19699E+00 .23991E+01 
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Figure 5: Comparison of exact and computed values over the boundary of  a circular cylinder for 32 

constant BE’s. 

TABLE (3) 

ELEMENT X Y VELOCITY EXACT 
VELOCITY 

1 -1.00 .05 .98258E-01 .20000E+01 

2 -.99 .15 .29383E+00 .26642E+01 

3 -.97 .24 .48654E+00 .35808E+01 

4 -.94 .34 .67460E+00 .45056E+01 

5 -.90 .43 .85616E+00 .53288E+01 

6 - .86 .51 .10295E+01 .59895E+01 

7 - .80 .59 .11929E+01 .64497E+01 

8 - .74 .67 .13447E+01 .66855E+01 

9 -.67 .74 .14837E+01 .66855E+01 

10 -.59 .80 .16084E+01 .64497E+01 

11 -.51 .86 .17175E+01 .59895E+01 

12 -.43 .90 .18102E+01 .53288E+01 

13 -.34 .94 .18854E+01 .45056E+01 

14 -.24 .97 .19424E+01 .35808E+01 

15 -.15 .99 .19808E+01 .26642E+01 

16 -.05 1.00 .20000E+01 .20000E+01 

17 .05 1.00 .20000E+01 .20000E+01 

18 .15 .99 .19808E+01 .26642E+01 

19 .24 .97 .19424E+01 .35808E+01 

20 .34 .94 .18854E+01 .45056E+01 

21 .43 .90 .18102E+01 .53288E+01 

22 .51 .86 .17175E+01 .59895E+01 

23 .59 .80 .16084E+01 .64497E+01 

24 .67 .74 .14837E+01 .66855E+01 

25 .74 .67 .13448E+01 .66855E+01 

26 .80 .59 .11929E+01 .64497E+01 

27 .86 .51 .10295E+01 .59895E+01 

28 .90 .43 .85616E+00 .53288E+01 

29 .94 .34 .67461E+00 .45056E+01 

30 .97 .24 .48654E+00 .35808E+01 

31 .99 .15 .29383E+00 .26642E+01 

32 1.00 .05 .98258E-01 .20000E+01 

33 1.00 -.05 .98258E-01 .20000E+01 

34 .99 -.15 .29383E+00 .26642E+01 

35 .97 -.24 .48654E+00 .35808E+01 

36 .94 -.34 .67460E+00 .45056E+01 

37 .90 -.43 .85616E+00 .53288E+01 
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38 .86 -.51 .10295E+01 .59895E+01 

39 .80 -.59 .11929E+01 .64497E+01 

40 .74 -.67 .13447E+01 .66855E+01 

41 .67 -.74 .14837E+01 .66855E+01 

42 .59 -.80 .16084E+01 .64497E+01 

43 .51 -.86 .17175E+01 .59895E+01 

44 .43 -.90 .18102E+01 .53288E+01 

45 .34 -.94 .18854E+01 .45056E+01 

46 .24 -.97 .19424E+01 .35808E+01 

47 .15 -.99 .19808E+01 .26642E+01 

48 .05 -1.00 .20000E+01 .20000E+01 

49 -.05 -1.00 .20000E+01 .20000E+01 

50 -.15 -.99 .19808E+01 .26642E+01 

51 -.24 -.97 .19424E+01 .35808E+01 

52 -.34 -.94 .18854E+01 .45056E+01 

53 -.43 -.90 .18102E+01 .53288E+01 

54 -.51 -.86 .17175E+01 .59895E+01 

55 -.59 -.80 .16084E+01 .64497E+01 

56 -.67 -.74 .14837E+01 .66855E+01 

57 -.74 -.67 .13448E+01 .66855E+01 

58 -.80 -.59 .11929E+01 .64497E+01 

59 -.86 -.51 .10295E+01 .59895E+01 

60 -.90 -.43 .85616E+00 .53288E+01 

61 -.94 -.34 .67461E+00 .45056E+01 

62 -.97 -.24 .48654E+00 .35808E+01 

63 -.99 -.15 .29383E+00 .26642E+01 

64 -1.00 -.05 .98258E-01 .20000E+01 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison exact and computed values over the boundary of a circular cylinder for 64 constant 

BE’s. 

3. Conclusion 

  Indirect boundary element method has been applied to calculate the hyperbolic flow 

past a circular cylinder in case of constant variation. The improvement in results gained 

by taking 32 and 64 constant elements can be seen from the tables (2), (3) and figures5, 6 

and such improvement increases with increase in number of boundary elements. 

Moreover, the computed results are in good agreement with exact results at the top of  a 

body under consideration.   
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