Journal of Faculty of Engineering & Technology
Journal homepage: www.pu.edu.pk/journals/index.php/jfet/index

Learning Stack: Structured, Object Oriented, Generic and Design Pattern Approach
Muhammad Shoaib Farooq1,3, Aqsa Ali1, Kamran Abid2, Adnan Abid1
1Department of Computer Science, University of Management and Technology, Pakistan.
2College of Engineering and Emerging Sciences, University of the Punjab, Lahore, Pakistan.
3Abdul Wali Khan University, Mardan, Pakistan.
{Shoaib.farooq; aqsa.ali; adnan.abid}@umt.edu.pk, kamran@pu.edu.pk

ABSTRACT
The concept of a stack, its usage and implementation hold central importance in computer programming courses taught in electrical and computer system engineering programs, as well as in computer science discipline. Stack covers all types of computational problem that can be solved with Last-In-First-Out (LIFO) principle. In the presence of a conventional course outlines and literature, there is a strong need to define standard topics and relevant subtopics for teaching stack. In this article, we highlight and address this problem, and as a principal contribution we define a taxonomy of stack from the perspective of its implementation using structured, and object oriented programming paradigms, and have also discussed its implementation using design patterns. To this end, we have used C++ language to present the code for different operations, and have supported the explanation with the help of memory diagrams, complexity issues, and example usage. We have also discussed the formal definition of stack.

Keywords: stack; data structure; stack design patterns; formal methods;
JFET 21(2) (2014) 191-203

Journal of Faculty of Engineering & Technology, 2014

202

1. Introduction. A stack is an ordered collection of the same type of elements in which insertion and deletion are made at one end called top, based on LIFO principle ‎[1]‎[2]‎[3] . It means the very first item that was inserted shall be removed at the end. The stack is considered among the core data structures and is useful in many applications e.g. Redo logs, arithmetic expression evaluation by enforcing precedence and associative rules, depth first search, conserving memory during function calls for local variables etc. The concept of stack is a core part of electrical, computer system engineering programs, and computer science curricula ‎[6]‎[7]‎[8] . There are two major approaches for teaching computer programming courses. One approach is referred to as an imperative first approach, whereas the other is known as object first approach. Universities that follow imperative first approach use procedural (structured) techniques in the data structure course, while the universities that follow object first approach use object oriented abstract data type based approach for implementing data structures ‎[13] . In the course outlines of data structure stack is usually presented at a high abstraction level, and the details are left for the faculty members. Therefore, in practice, the relevant subtopics totally depend upon the faculty consensus and as a result we have different variants of teaching this topic. To the best of our knowledge, no concrete and well defined subtopics on the stack have been defined.
The major focus of this article is to figure out all possible implementations of stack using structured, object oriented, generic and design pattern approaches. These approaches lead us to propose a taxonomy of the implementation of stack. The other contribution of this work is that we have implemented all possible variants of stack and illustrate their codes with the help of memory diagrams. We have used C++ for implementation of the stack, because this language has been commonly used as a first programming language in engineering and computer science disciplines, and it supports both imperative first, and object first teaching approaches in an equally good manner.

The rest of the article has been organized in such a way that Section 2 presents the related work, whereas Section 3 presents the taxonomy in detail. Furthermore, in Section 4, we present the relative importance of each variant in terms of teaching the course of data structures. Lastly, we present the conclusion of this work in Section 5.

2. Related Work

The concept of stack was introduced by Alan M. Turing in 1946 in the design of computer using subroutines. Alan M. Turing used the term bury and unbury for adding a data on the top of the stack, and removing data from it ‎[18]. Currently, push and pop operations are being used as the names of these operations. Gelfand at. el. propose design pattern for the stack data structure, and highlighted its importance in the curriculum‎ [9]. Niculescu discussed the importance of design patterns in data structure implementation ‎[11]. The ACM curriculum 2001, 2008 and 2013 proposes contents related to stack in CS1 and CS2 course, but detail sub topics have not been included ‎[14]‎[15]‎[16]. There are two major variants of the course of data structures which discuss stack as a core topic and are named as Fundamental Data Structures and Data Structures and Algorithms.

3. Classification of Stack

In this section firstly we present a formal definition of stack, which is then followed by a taxonomy of stacks based on its implementation using structured and object oriented paradigms. Figure 1 shows the defined taxonomy with all details.

3.1 Formal Definition of a Stack

As an abstract definition stack is defined as a linear list of items in which all additions and deletion are restricted to one end that is top ‎[10]‎[17]‎[19] . Mathematicians formally solve all types of computational problems using three data structures i.e. set, sequence and map. A sequence is an ordered collection of objects, and stack is also an ordered list based on last-in-first-out (LIFO) principle. Hence, sequence is considered to be a better suitable collection of modeling a stack. The formal specification of stack using Vienna Development Method (VDM) has been presented in Table 1. Here, Element= TOKEN means stack can store any type just like templates in C++. The init mk-Stack is initialization function that shows initially the stack is empty. The ext wr in push function means write/read access on the stack. There is no precondition for push function, whereas the post condition ensures that the new state of the stack should be equal to parameter p concatenated with the old state of the stack. The pop method has read and write access on the stack. The pre-condition ensures stack should not be empty before pop, whereas the post-condition ensures two things: firstly, new state of stack should be equal to the tail of stack (in sequence tail means all except head), and secondly, itemDeleted should be equal to the head of old state of stack. Here, stack with header line means a previous state of stock. The isEmpty function returns true if the stack sequence is empty, and false otherwise.

	Table 1 : Formal Specification of Stack in VDM

	types
 Element = TOKEN

state Stack of
 stack : Element*
 init mk-Stack(s)∆s =[]
end

push(p : Element)
ext wr stack : Element*
pre TRUE

post stack= [p] ^

pop() itemDeleted : Element
ext wr stack : Element*
pre stack ≠ []

post stack = tl ^ itemDeleted = hd
isEmpty() query :β
ext rd stack : Element*
pre TRUE
post query ⇔ stack = []

3.2 Taxonomy of Stack using Different Implementations

We have defined two major classes based on the implementation of stack using two different programming paradigms, structured paradigm and object oriented programming paradigm. The structured paradigm supports imperative first approach of teaching computer programming. Whereas, the object oriented approach can be incorporated using both imperative first and object first approaches. However, in the former case we need to teach the course of object oriented programming before teaching data structures.
The stack can be implemented using two different core data structures called array and linked lists. We have discussed all different variants of stacks irrespective of programming paradigms using these core data structures. The taxonomy tree shows that structured approach offers the aforementioned two different ways of implementing stack i.e. by using arrays, and by using linked lists. Whereas, the object oriented approach offers many different abstractions while using the same basic data structures of arrays and linked lists. The taxonomy tree presented in Figure 1 clearly shows that the object oriented implementation is richer than the relatively simplified implementations using structured programming. In all the object oriented approaches, we can implement different ADTs using array and linked list. Furthermore, in the same paradigm we can implement generic implementations using both array and linked list. Lastly, we have discussed the object oriented implementation of stack using adapter design pattern, where we implement it in two different ways while using the concepts of inheritance and composition.

[image:]

Figure 1: Taxonomy of stack based on its implementation

Implementation of stack offers all major services push, pop, and peek which are implemented in the form of independent global functions outside the client program ‎[17]. These stack services can be implemented with the help of fixed sized arrays, as well as using dynamic sized linked list ‎[20] . Apart from the major services there is a supporting method known as isEmpty that helps identifying if the stack possesses any data or not.

The array based implementation involves fixed length stack and therefore requires a method isFull that informs the main program that the stack possesses maximum allowed objects or not. Whereas, in the case of linked list based implementation the stack can grow and shrink to any limit, hence isFull method is not required. The signatures of all the methods have been presented in Table 2.

Table 2: Signatures of major services/methods implemented in the Stack
	Method
	Purpose
	Used in Linked List
	Used in Array
	Signature

	Push
	Add an element in the stack
	Yes
	Yes
	bool push(int p) (for array)

	
	
	
	
	void push(int p) (for linked list)

	Pop
	Remove an element from the stack
	Yes
	Yes
	bool pop(int &p)

	Peek
	Get value of the element at the tos
	Yes
	Yes
	Bool peek(int &p)

	isEmpty
	Tells if the stack is empty or not
	Yes
	Yes
	Bool isEmpty()

	isFull
	Tells if the stack is full (based on its size)
	No
	Yes
	Bool is Full()

In order to better understand each variant, it is pertinent to note that for each array based implementation, we have discussed push, pop, peek, isFull, and isEmpty methods, whereas for linked list based implementations we exclude isFull as it is no more valid. We further discuss each implementation using a case study example in the client program (main function) which swaps two variables using stack. We have also presented a memory diagram for each step of the swapping function for array and linked list.

3.2.1 Structured Implementation of Stack

3.2.1.1 Array based (fixed size) stack: Implementation of stack using an array is a simple and straightforward technique in which the size of a stack cannot be changed after its creation. The push operation may or may not be successful as it depends on the size of stack ‎[4]‎[5] . The return type of the push function while implementing stack using an array is a Boolean as shown on line 4 of Code Listing 1. This function returns true if the inserted data has been successfully pushed on the top of the stack. Whereas, it returns false in case the array is already full. A memory variable Top of Stack (tos) is used as index to support push and pop operations on the stack. The initial value of this variable is -1 which means the stack is empty. Every push operation places data on the array after incrementing in tos variable by one. Similarly, every pop operation of stack decrements tos variable by one after placing data form array ‘a’ to parameter ‘p’ shown in the signatures presented in Table 1. The peek operation is used to show the top value of a stack, and is the same as that of pop, except it does not change the variable tos. The main function in Code Listing 1 swaps two variables with push and pop operations implemented using C++, whereas, the memory diagrams are shown in Figure 2.
[image:]
Figure 2: Array based (fixed stack) size (code listing 1). (a) Initial empty stack (line no 3). (b) Push 10 as element onto stack with tos=0 (line no 35). (c) Push 20 as element onto stack with tos=1 (line no 36). (d) Pop 20 as an element from stack with tos=0 (line no 38).

	Code Listing 1: Array based stack in C++

	1 const int size=10;
2 int a[size];
3 int tos=-1;
4 bool push(int p) {
5 bool flag=true;
6 if(tos!= size)
7 flag=false;
8 else{
9 tos++;
10 a[tos]=p;
11 }
12 return flag;
13 }
14 bool pop (int &p){
15 bool flag=true;
16 if(tos==-1)
17 flag=false;
18 else{
19 p=a[tos];
20 tos--;
21 }
22 return flag;
23 }
	24 bool peek (int &p){
25 bool flag=true;
26 if(tos==-1){
27 flag=false;
28 }
29 else{
30 p=a[tos];
31 }
32 return flag;
33 }
34 void main (){
35 int a=10;
36 int b=20;
37 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
38 push(a);
39 push(b);
40 pop(a);
41 pop(b);
42 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
43 }

3.2.1.2 Linked list based (dynamic size) stack: Implementation of stack using a linked list is another straight forward technique in which the size of a stack can grow and shrink dynamically while using push and pop operations, respectively. The push operation is always successful if space is available in the heap memory. Here, return type of push operation is void as shown in Table 1.
The variable tos (Top of stack) is the head pointer of the linked list, and is used for push and pop operations. The initial value of this variable is NULL that represents an empty stack. Every push operation adds a new node on the front of the linked list, and places the new data in that node. It also sets the newly inserted node as tos.
Similarly, every pop operation of stack removes the head node form the linked list and returns the data in a reference variable. The peek operation is same as that of pop operation, except it does not remove the head node. The main method in Code Listing 2 swaps two variables with push and pop operations. Whereas, Figure 3 shows all the steps of the main method with the help of memory diagrams.

[image:]

Figure 3: Linked list based (dynamic stack) size (code listing 2). (a) Initial stack (b) push value of ‘a’ on stack (c) push value of ‘b’ on stack (d) pop value of ‘a’ from stack (e) pop value of ‘b’ from stack.

	Code Listing 2: Linked list based stack in C++

	1 struct Node{
2 int data;
3 Node *next;
4 } *tos;
5 bool isEmpty(){
6 if (tos==NULL)
7 return true;
8 else
9 return false;
10 }
11 void push(int d){
12 if(isEmpty()){
13 tos=new Node;
14 tos->data=d;
15 tos->next=NULL;
16 }
17 else{
18 Node *temp;
19 temp=new Node;
20 temp->data=d;
21 temp->next=tos;
22 tos=temp;
23 }
24 }
25 bool pop(int &d){
26 bool flag=true;
27 if(!isEmpty()){
28 Node *temp;
29 d=tos->data;
	30 temp=tos;
31 tos=tos->next;
32 delete temp;
33 }
34 else
35 flag=false;
36 return flag;
37 }
38 bool peek(int &d){
39 bool flag=true;
40 if(!isEmpty()){
41 d=tos->data;
42 }
43 else
44 flag=false;
45 return flag;
46 }
47 void main (){
48 int a=10;
49 int b=20;
50 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
51 push(a);
52 push(b);
53 pop(a);
54 pop(b);
55 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
56 }

3.2.2 Object Oriented Implementation of Stack

A stack can be implemented using object oriented programming in the form of an Abstract Data Type (ADT) ‎[4]. This implementation involves classes which require a name, data members, and methods. Figure 4 shows UML diagram of five basic operations of stack ADT. The Code Listing 3 shows array based, while Code Listing 4 shows linked list based ADT of implementing a stack in C++. Application wise, the ADT based implementation of stack provides advantage of reusability and maintenance of data and functions.

The methods remain the same as shown in Table 1. However, there are different data members while implementing stack using array and using linked list. In the array based implementation as shown in Code Listing 3, we need an array to store the data in a stack, and the limitation with the array is its size which requires us to use yet another data member size. The third data member is tos variable which is an integer and holds a value -1 at the start, showing that the stack is empty. It increases by one with each successful push operations, and decreases by 1 with each successful pop operation.

[image:]
Figure 4: UML diagram of Stack Class

	Code Listing 3: ADT stack (array based) in C++

	1 class Stack{
2 public:
3 Stack(int s){size=s;
4 data=new int[size];
5 tos=-1;
6 }
7 bool isEmpty(){ return tos==-1; }
8 bool isFull(){return tos==size-10;}
9 bool push(int d){
10 bool flag=true;
11 if (!isFull()){
12 tos++;
13 data[tos]=d;
14 }
15 else
16 flag= false;
17 return flag;
18 }
19 bool pop(int &d){
20 if (!isEmpty()){
21 d=data[tos];
22 tos--;
23 return true;
24 }
 else
25 return false;
26 }
27 bool peek (int &p){
28 bool flag=true;
29 if(tos==-1){
	30 flag=false;
31 }
32 else{
33 p=a[tos];
34 }
35 return flag;
36 }
37 private:
38 int *data;
39 int size;
40 int tos;
41 };
42 void main (){
43 int a=10;
44 int b=20;
45 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
46 Stack s(2);
47 s.push(a);
48 s.push(b);
49 s.pop(a);
50 s.pop(b);
51 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
52 }

The linked list based implementation of stack involves a Node class that defines a storage space of a data value along with a pointer that connects one data element (node) with its subsequent data element (node). The stack class holds a pointer of type Node that points to the first node of the stack, and is shown as tos in the Code Listing 4. The push function adds a new node at the beginning of the stack and populates its data with the input value. It also sets the new node as tos, and connects it to the previously existing tos. Whereas, the pop function removes the top of the stack, in case it is not empty, and then it sets the subsequent node to be the tos.

3.2.3 Generic stack

Generic stacks help storing the data of any specific type in the stack. C++ supports such flexibility with the help of template classes. There is an arbitrary data type hard coded in class stack and it should be decided at an object declaration time by passing type parameter. The UML diagram shown in Figure 5 shows stack operations with generic parameter. The Code Listings 5 and 6 show array and linked list based generic stack in C++, respectively.

[image:]
Figure 5: UML diagram of Stack Generic class
	
Code Listing 4: ADT stack (Linked list based) in C++

	1 class Node{
2 public:
3 int data;
4 Node *next;
5 };
6 class Stack{
7 public:
8 Stack(){
9 tos=NULL;
10 }
11 bool isEmpty(){
12 if(tos==NULL)
13 return true;
14 else
15 return false;
16 }
17 void push(int d){
18 if(isEmpty()){
19 tos=new Node;
20 tos->data=d;
21 tos->next=NULL;
22 }
23 else{
24 Node *temp;
25 temp=new Node;
26 temp->data=d;
27 temp->next=tos;
28 tos=temp;
29 }
30 }
31 bool pop(int &d){
32 bool flag=true;
33 if(!isEmpty()){
	34 Node *temp;
35 d=tos->data;
36 temp=tos;
37 tos=tos->next;
38 delete temp;
39 }
40 else flag=false;
41 return flag;
42 }
43 bool peek(int &d){
44 bool flag=true;
45 if(!isEmpty()){
46 d=tos->data;
47 }
48 else flag=false;
49 return flag;
50 }
51 private:
52 Node *tos;
53 };
54 void main (){
55 int a=10;
56 int b=20;
57 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
58 Stack s;
59 s.push(a);
60 s.push(b);
61 s.pop(a);
62 s.pop(b);
63 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
64 }

	Code Listing 5: Generic stack (array based) in C++

	1 template <class T>
2 class Stack{
3 public:
4 Stack(int s){size=s;
5 data=new T[size];
6 tos=-1;
7 }
8 bool isEmpty(){return tos==-1; }
9 bool isFull(){return tos==size-1;}
10 bool push(T d){
11 bool flag=true;
12 if (!isFull()){
13 tos++;
14 data[tos]=d;
15 }
16 else
17 flag= false;
18 return flag;
19 }
20 bool pop(T &d){
21 if (!isEmpty()){
22 d=data[tos];
23 tos--;
24 return true;
25 }else
26 return false;
27 }
28 bool peek (T &p){
	29 bool flag=true;
30 if(tos==-1){
31 flag=false;
32 }
33 else{
34 p=a[tos];
35 }
36 return flag;
37 }
38 private:
39 T *data;
40 int size;
41 int tos;
42 };
43 void main (){
44 int a=10;
45 int b=20;
46 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
47 Stack <int> s(2);
48 s.push(a);
49 s.push(b);
50 s.pop(a);
51 s.pop(b);
52 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
53 }

	Code Listing 6: Generic stack (linked list based) in C++

	1 template <class T>
2 class Node{
3 public:
4 T data;
5 Node *next;
6 };
7 template <class T>
8 class Stack{
9 public:
10 Stack(){tos=NULL;}
11 bool isEmpty(){
12 if(tos==NULL)
13 return true;
14 else
15 return false;
16 }
17 void push(Node* d){
18 if(isEmpty()){
19 tos=new Node;
20 tos=d;
21 }
22 else{
23 d->next=tos;
24 tos=d;
25 }
26 }
27 bool pop(Node* d){
28 bool flag=true;
29 if(!isEmpty()){
30 d=tos;
31 tos=tos->next;
32 }
33 else flag=false;
34 return flag;
35 }
	36 bool peek(Node* d){
37 bool flag=true;
38 if(!isEmpty()){
39 d=tos;
40 }
41 else flag=false;
42 return flag;
43 }
44 private:
45 Node <T> *tos;
46 };
47 void main (){
48 int a=10;
49 int b=20;
50 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
51 Stack <int> s;
52 Node <int> *t;
53 t=new Node;
56 t->data=a;
57 t->next=NULL;
58 s.push(t);
59 t->data=b;
60 s.push(t);
61 s.pop(t);
62 a=t->data;
63 s.pop(t);
64 b=t->data;
65 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
66 }

3.2.4 Adapter design pattern. The stack can be implemented using already existing linked list class through adapter design patterns ‎[12]. The two operations of linked list class i) addonHead and ii) deletefromHead are behavior wise same as push and pop operations of Stack class. This type of interface difference between two classes can be accommodated through the adapter design pattern. Adapter pattern lets another class work together with incompatible interfaces. Interfaces may be incompatible, but the inner functionality of both classes should complete the need. It is applicable when interface of an existing class does not match with actual requirements. Adapter pattern, in turn, can be implemented in two ways, by two different concepts of object oriented programming namely, inheritance and composition.

3.2.4.1 Adapter pattern using inheritance: The concept of inheritance can be used to implement the adapter pattern. Subclass (Stack) privately inherits the base class (LinkedList) and redefines new interfaces (push, pop) over base class interfaces (addonHead, deletefromHead). The Stack class can only call its defined functions i.e. push and pop. The Stack class uses already implemented logic in LinkedList class as a major advantage of reusability. Figure 6 shows a UML diagram of adapter pattern using inheritance. Here, code listing shows an adapter pattern through inheritance in which Stack class privately inheriting the methods (addonHead, deletefromHead) of the LinkedList class (Line 44-51).

[image:]
Figure 6: UML diagram of implementing stack using inheritance with LinkedList

	Code Listing 7 : Adapter through inheritance in C++

	1 class Node {
2 public :
3 int data;
4 Node *next;
5 };
6 class LinkedList{
7 public :
8 LinkedList() {
9 head=tail=NULL;
10 size=0;
11 }
12 bool addonHead(int d){
13 if (head==NULL){
14 head=new Node;
15 head->next=NULL;
16 }
17 else{ //non-empty-linkedList
18 Node *temp=new Node
19 temp->data=d;
20 temp->next=head;
21 head=temp;
22 }
23 }
24 bool deleteFromHead(int &p){
25 if (head==NULL) //case 1
26 return false;
27 else if(head->next==NULL){//case 2
 p= head->data;
28 delete head;
29 head=tail=NULL;}
30 else{ //case 3
31 Node *temp=head;
32 p=head->data;
	33 head=head->next;
34 delete temp;
35 }
36 size=size-1;
37 return true;
38 }
39 private:
40 Node *head;
41 Node *tail;
42 int size;
43 };
44 class Stack :private LinkedList{
45 public :
46 bool push(int p) {
47 return addonHead(p);
48 }
49 bool pop(int & p) {
50 return deleteFromHead(p);
51 }
52 };
53 void main (){
54 int a=10;
55 int b=20;
56 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
57 Stack s;
58 s.push(a);
59 s.push(b);
60 s.pop(a);
61 s.pop(b);
62 cout<<"after Swapping a="<<a<<" and b="<<b<<endl;
63 }

2.2.2.2 Adapter pattern using composition. The concept of composition can be used to implement the adapter pattern. This method is better than inheritance because of strong association between two classes ‎[4]. Most of the object oriented programming language support composition as compared to private inheritance. For example JAVA support composition but does not support private inheritance ‎[19]. Figure 7 shows a UML diagram of the adapter pattern using composition. Here code listing shows an adapter pattern through composition (Line 45-55).

[image:]
Figure 7: UML diagram for implementation of Stack using composition of LinkedList

	Code Listing 8 : Adapter through composition in C++

	1 class Node {
2 public :
3 int data;
4 Node *next;
5 };
6 class LinkedList{
7 public :
8 LinkedList() {
9 head=tail=NULL;
10 size=0;
11 }
12 bool addonHead(int d){
13 if (head==NULL){
14 head=new Node;
15 head->next=NULL;
16 }
17 else{//non empty linkedList
18 Node *temp=new Node
19 temp->data=d;
20 temp->next=head;
21 head=temp;
22 }
23 }
24 bool deleteFromHead(int &p){
25 if (head==NULL) //case 1
26 return false;
27 else if(head->next==NULL){
28 p= head->data; //case2
29 delete head;
30 head=tail=NULL;}
31 else { //case 3
32 Node *temp=head;
33 p=head->data;
34 head=head->next;
35 delete temp;
36 }
	37 size=size-1;
38 return true;
39 }
40 private:
41 Node *head;
42 Node *tail;
43 int size;
44 };
45 class Stack {
46 public :
47 bool push(int p) {
48 return list.addonHead(p);
49 }
50 bool pop(int & p) {
51 return list.deleteFromHead(p);
52 }
53 private:
54 LinkedList list;
55 };
56 void main (){
57 int a=10;
58 int b=20;
59 cout<<"Before Swapping a="<<a<<" and b= "<<b<<endl;
60 Stack s;
61 s.push(a);
62 s.push(b);
63 s.pop(a);
64 s.pop(b);
65 cout<<"after Swapping a="<<a<<" and b= "<<b<<endl;
66 }

4. Relative Importance of the Implementation Variants

In this section we highlight the relative importance of each variant so as to cover this topic of stack in an introductory course of data structures. We can clearly see from Figure 1 that a stack can be implemented using structured as well as object oriented programming techniques. There are two widely used methods for teaching computer programming courses, firstly object first approach is used; whereas, object later approach is the other variant. In the first case, the students learn the course of data structures after learning basic computer programming constructs, therefore, structured programming is used in this case. However, in the second case, the students have learned object oriented programming before studying the course of data structures. Therefore, in this case, object oriented paradigm is used to teach the course of data structures. Table 3 shows the importance of each implementation variants in terms of teaching the topic of Stack in a course of data structures. A brief description has been presented as remarks in the last column of the table to reason a certain recommendation level. Clearly, core means that the variant must be covered, recommended means that it should be covered subject to the provision of time, whereas, optional means that it may or may not be covered. In case of not covering a recommended or optional variants, we strongly recommend that these be considered in laboratory work, in assignments, or as supporting reading material of the topic.

Table 3: Recommendation Level of Each Variant
	Implementation Variant
	Recommendation Level
	Remarks

	[bookmark: _GoBack]Structured Programming
	Core
	Must be taught in case of imperative first approach of teaching computer programming course.
Both Array and Linked List based implementations should be taught.

	Object Oriented Programming
	Core
	Must be taught in case of object first approach or in case, object oriented programming has been taught prior to teaching data structures.
Both Array and Linked List based implementations should be taught.

	Generic Approach
	Recommended
	Subject to the provision of time it is recommended to teach.

	Adapter Approach
	Recommended
	Subject to the provision of time it is recommended to teach.

	Design Pattern Approach
	Optional
	May or may not be taught, but can be provided as additional resource.

5. Conclusion and Further work

In this article, we define a taxonomy of stack from the perspective of its implementation using structured, and object oriented programming paradigms, and have also discussed its implementation using design patterns. We have explained all the variants of implementing stack using C++ programming language. We strongly believe that this taxonomy of implementing stack in different possible ways along with relevant details would help defining a better content list for different variants of the course of Data Structure.

REFERENCES

1. [bookmark: _Ref396184236]Goodrich, M., Tamassia, R., & Mount, D. (2007). DATA STRUCTURES AND ALOGORITHMS IN C++. John Wiley & Sons.
1. [bookmark: _Ref396184243]Drozdek, A. (2012). Data Structures and algorithms in C++. Cengage Learning.
1. [bookmark: _Ref396184246]Dastidar, G. D., Chattopadhyay, M., Chattopadhyay, S., & Ghosh, D. D. (2003). Data Structures through C Language.
1. [bookmark: _Ref396184253]Malik, D. S. (2010). C++ programming: Program design including data structures. Cengage Learning.
1. [bookmark: _Ref404167170]Stack (abstract data type), “http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#cite_note-4” retrieved 19 November, 2014.
1. [bookmark: _Ref402957262][bookmark: _Ref392512974]Sahami, M., Roach, S., Cuadros-Vargas, E., & Reed, D. (2012). Computer science curriculum 2013: reviewing the strawman report from the ACM/IEEE-CS task force. In Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 3-4). ACM.
1. [bookmark: _Ref404169049]Roberts, E., Shackelford, R., LeBlanc, R., & Denning, P. J. (1999). Curriculum 2001: Interim report from the ACM/IEEE-CS task force. In ACM SIGCSE Bulletin (Vol. 31, No. 1, pp. 343-344). ACM.
1. [bookmark: _Ref392512976]Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, A, & Weide, B. W. (2008). Computer science curriculum 2008: An interim revision of CS 2001.
1. [bookmark: _Ref404258446]Gelfand, N., Goodrich, M. T., & Tamassia, R. (1998). Teaching data structure design patterns. In ACM SIGCSE Bulletin (Vol. 30, No. 1, pp. 331-335). ACM.
1. [bookmark: _Ref404258905]Hopcroft, J. E. (1983). Data structures and algorithms. Pearson education.
1. [bookmark: _Ref404259817]Niculescu, V. (2012). A DESIGN PATTERNS PERSPECTIVE ON DATA STRUCTURES. Acta Universitatis Apulensis, (30), 335-354.
1. [bookmark: _Ref404260231]Nguyen, D. (1998). Design patterns for data structures. In ACM SIGCSE Bulletin (Vol. 30, No. 1, pp. 336-340). ACM.
1. [bookmark: _Ref404262599]Ernst, D. J., Stevenson, D. E., & Wagner, P. J. (2009). Hybrid and custom data structures: evolution of the data structures course. ACM SIGCSE Bulletin, 41(3), 213-217.
1. [bookmark: _Ref404773390]Roberts, E., Shackelford, R., LeBlanc, R., & Denning, P. J. (1999). Curriculum 2001: Interim report from the ACM/IEEE-CS task force. In ACM SIGCSE Bulletin (Vol. 31, No. 1, pp. 343-344). ACM.
1. [bookmark: _Ref404773377]Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, faWeide, B. W. (2008). Computer science curriculum 2008: An interim revision of CS 2001.
1. [bookmark: _Ref404773379]Sahami, M., Roach, S., Cuadros-Vargas, E., & Reed, D. (2012). Computer science curriculum 2013: reviewing the strawman report from the ACM/IEEE-CS task force. In Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 3-4). ACM.
1. [bookmark: _Ref404788407]Horowitz, Ellis: "Fundamentals of Data Structures in Pascal", page 67. Computer Science Press, 1984
1. [bookmark: _Ref405479003]C. L. Hamblin, "An Addressless Coding Scheme based on Mathematical Notation", N.S.W University of Technology, May 1957 (typescript).
1. [bookmark: _Ref405479272]Charatan, Q., & Kans, A. (2004). Formal software development: from VDM to Java. Palgrave Macmillan.
1. [bookmark: _Ref403942645]Muhammad Shoaib Farooq, Aqsa Ali, Adnan Abid (2014) What Should Be Taught About Arrays In Cs2? 2nd International Conference on Computational and Social Sciences (ICCSS-14), Vol (3), pp. 2904-2913.
image1.wmf
Stack

oleObject1.bin

image2.wmf
Stack

oleObject2.bin

image3.wmf
Stack

oleObject3.bin

image4.png
Stack

Structured Stack Object Oriented stack (ADT)

Generic stack Adapter design pattern

array based (Fixed
Ammay based (Fixed Linked list based S79) ADT stack
size) stack

stack (Dynamic
size) Linked list based ~ Array based Linked list
ADT stack (Fixed size) ‘based generic Composition
(Dynamic size) ~ generic stack stack inheritance
(Dynamic

size)

image5.png
0 1 2 0 1 2
10 10 20
tos=-1 a=10 b=20 tos=0 a=10 b=20 Push(a) tos=1 a=10 b=20 Push(b)
a) b) R
0 1 2 0 1 2
10 10
tos=0 a=20 b=20 pop(a) tos=-1

a=20 b=10 pop(b)
€

a

image6.png
tos tos

tos l l

/ 10 10 20

a=10 b=20 a=10 b=20 push(a) a=10 b=20 push(b)
a) b))
tos tos

| |
20 /

2=20 b=20 pop(a) 2=20 b=10 pop(b)
))

image7.png
Stack

tos : int
Contents: Object

+bool push(int data)
+bool pop(int &data)
+bool peek(int &data)
+bool isEmpty()
+bool isFull()

image8.png
Stack

tos :int
Contents: T

+bool push(T data)
+bool pop(T &data)
+bool peek(T &data)
+bool isEmpty()
+bool isFull()

image9.png
Stack

push (int data)
pop(int &data)
peek(int &data)

Stack

push (int data)
pop(int &data)
peek(int &data)

: * isEmpty()
* isEmpty() -
+ iskull() isFull()
Linked list Linked list

addonHead(int data)
addonTail(int data)

bool deletefromHead(int &data)
bool removeTail(int &data)
bool search(int key)

addonHead(int data)
addonTail(int data)

bool deletefromHead(int &data)
bool removeTail(int &data)
Dbool search(int key)

