
JFET 22 (1) (2015) 

 

1
 

 

Journal of Faculty of Engineering & Technology 
 

Journal homepage: www.pu.edu.pk/journals/index.php/jfet/index 

 

BUILDING PRIOR DENSITIES FOR MAXIMUM ENTROPY 

REFINEMENT OF X-RAY DATA FOR TOPOLOGICAL 

ANALYSIS 
Ahmad Shuaib*

1
, Abdul Waheed Anwar

1
, Khurshid Aslam Bhatti 

1
, Ishrat Mubeen Dildar

1
, Qasim Ali 

Chaudhary
2 

1
Department of Physics, University of Engineering and Technology Lahore, Pakistan. 

2
Department of Mathematics, University of Engineering and Technology Lahore, Pakistan. 

 

 

Abstract: 

 

The aim of this research work is to develop a method to provide a reasonable “prior” electron 

density that can be used in the so-called “Maximum Entropy Method” (MEM) refinement of X-

ray diffraction (XRD) data in order to reconstruct experimental electron density at a resolution 

allowing its accurate topological analysis. A program was developed which build electron 

density on a regular grid in the “Independent Atom Model” (IAM) approach, more precisely 

from the knowledge of individual “spherical” atomic scattering factors of the atoms constituting 

the unit cell of the studied compounds. IAM X-ray structure factors of bismuth and its prior 

density on a grid has been generated to be tested with the MEM “Enigma” software. Preliminary 

accuracy and performances have been compared when such reasonable “prior” density is used 

instead of starting with “flat” density.  
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1. Introduction 

 

MEM is a powerful tool used for various crystallographic problems was introduced by Collins 

[1]. Electron density maximization by refinements and building of the real electron density plays 

an important role in the crystal structure analysis [2]. The bonding studies can give information 

of the atomic level properties that can be used for the preparation and growth of materials 

suitable for specific needs. Studies have been carried out for the electron distribution of 

important materials like aspherical electron density distribution, synchrotron radiation for the 

charge density using multipole analysis [3, 4]. In materials precise study of the bonding is always 

useful and interesting, yet no study can reveal exactly the real picture, because no two data sets 

of a crystalline system are identical. X-Ray diffraction elaborated the electron density 

distribution experimentally, however theoretical studies have also been used in crystallography 

for the application of MEM method to the problems which involve Fourier technique [5]. MEM 

has also been used to synchrotron powder X-ray diffraction data for the catalytic reduction of 

NOx with NH3 on fully dehydrated CHA-type zeolites [6].  

In the present analysis, a program has been written in FORTRON 90 language in order to 

calculate a prior density to be used with MEM software.  

 

2. Material and Methods 

 

2.1 Atomic Centered density  

In IAM, atomic densities are assumed to be spherically symmetric, with a radial dependence 

equal to that of the theoretical ground state of isolated atoms. IAM approach is a good 

approximation for the heavier atoms for which the valence shell is a minor part of the total 

density. Whereas this model is less successful for the lighter atoms [4]. 

 -formalism is the simple modification of the IAM model, which makes it possible to allow for 

charge transfer between atoms. In the  -formalism, the atomic density is formulated as: 

)()( 3 rPr valencevcorevalencecoreatom    

where, 

  vP  = valence shell population parameter 

    = parameter which allows the expansion and contraction of the valence shell.                     

The scattering factor of the valence density component can be obtained by the Fourier 

transformation. Since we consider spherical atoms, 
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By replacing r and Q in the exponent by  r and Q/ , respectively and writing 
3
dr=4 

2
d(

 r), 

)/( QfQf valence
valence




 

From above relation it is clear that k -modified scattering factor can be obtained directly from the 

unperturbed IAM scattering factors. The k - structure factor formalism is, 

 

Where scattering factors corejf ,  and valencejf ,   are normalized to one electron and  cjP ,  and vjP ,  are 

the core and valence electron populations respectively. 

Multipole density formalism is a valence-density formalism in which the density of each atom is 

described as [7]: 
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Where first two parts in the above equation includes the spherical core density and the spherical 

extended/reduced part of the valence density and this part is  -dependant. In addition the 

summation includes the aspherical feature of the valence density expressed as a combination of 

the spherical harmonics ),( lmY . 

For atomic form factor according to the multipole formalism, applying the Fourier 

transformation, the aspherical atom scattering factor of atom ‘j’  can be written as, 


 


max

0 0

,,,, )
'

()
'

()()(
l

l

l

m p

lmplmpvalencejvjcorejcjj

Q
fP

Q
fPQfPQf


 

In which the multipole scattering factor )(Qflmp  are the orientation- dependant Fourier 

transformations of the spherical harmonic deformation functions developed on real spherical 

harmonics (p=  ).The structure factor expansion according to above relation is: 
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Where,  
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l

lmp   , 

lmpd = Real spherical harmonics (P=  ) 
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2.2 Maximum entropy method (MEM) 

MEM is a tool that can yield high resolution electronic charge density from a limited number of 

diffraction data (much less than in themultipolar approach). The first application of MEM to a 

charge density was performed for Si, and provided with detailed structural information including 

bonding characteristics among atoms [8]. Subsequently, it has been applied to a wide variety of 
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materials and revealed several important aspects of the nature of electronic structures from the 

view-point of charge density. 

MEM is an information based technique that was first developed in the field of radio astronomy 

to enhance the obtained images from noisy data [9]. The entropy expression for ‘N’ identical 

particles distributed over ‘m’ boxes, each populated by ni particles, where ‘qi’ is the prior 

probability for the i
th

 box to contain ni particles is given, according to Jaynes [10], by: 

i
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In Crystallography, MEM was introduced by Collins [1], who expressed the information entropy 

as a sum over M grid points in the unit cell as, 

    



M

j

rmrPrPrS
1

)(/)(ln)(  

Applying an iterative procedure, the entropy   rS   is maximized subject to the constraint. 

The algorithm of entropy maximization is nonlinear and must be applied iteratively. 

Convergence is thus achieved in a two-step process for which first the
2 = N constraint is 

satisfied (last part of the right term of above equation) and subsequently the entropy ‘S’ is 

maximized. 

 

2.3 Prior density 

 

MEM often yields better results if one can provide with a reasonable prior density. One way to 

achieve this is to build a prior density from the IAM. If one can build atomic densities and 

convolute them with thermal atomic motion, by summing up over all atoms, one can expect to 

construct a reasonable prior density. In our case we construct atomic radial electron distribution 

from analytical expressions of atomic scattering factor approximations to which we apply 

isotropic thermal motion. The atomic structure factors Qf j


 for isolated atoms or ions are given 

in these tables as the sum of Gaussian. We show below that then j is also a sum of Gaussian. 

Analytical approximations can be found in handbooks of crystallography for spherical atomic 

structure factor, in the range (Q<8
2
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Analytical expression for the corresponding radial density applying standard formula [11], 

)exp()()( 22/3 BrBar
j

j  
  

It comes to be the sum of Gaussian. Therefore if structure factor is the sum of Gaussian, the 

density of the atoms is also the sum of Gaussian. 
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2.4 Program in FORTRAN  

A program has been developed using FORTRAN90 language in order to calculate a prior density 

to be used with MEM software. The schematic diagram of the program is given in figure 1. 

 
Figure 1: Schematic diagram of main program 

 

After reading atom’s characteristics: electron number, position and isotropic thermal motion 

parameter (Read_atom file procedure), corresponding atomic scattering factor coefficients are 

read. Then the program loops are taken over all grid points and for each grid point all 

contributing atoms, including periodic images within a given sphere of enclosure (e.g: d=15 Å) 
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End Main Program 

To build density at one grid point 
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Start Main Program 

Read_atoms characteristics 

 

Attribute atomic scattering factor coefficients 

Read threshold distance d° (enclosure sphere) 

Read allowed periodic images 

Read grid parameters (origin, number of electrons, 

mesh vectors) 
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are taken into account. The program can also build a list of cell structure factors F(hkl) of the 

IAM model that can be used as test input for testing Maximum Entropy Method. 

 

3. RESULTS AND DISCUSSION 

 

ENIGMA software have been used to test the developed programe on bimuth [12]. Bismuth 

crystalises in the rhombohedral system R-3m with unit cell parameter a = 4.746 Å and angle α = 

57.230°. There are two Bi atoms (83 electrons) related by inversion center with the special 

position (u,u,u) where u=0.234. From bismuth atomic scattering factors a set of unit cell 

crystallized bismuth structure factors F(hkl) for |h|, |k|, |l| ranging from 0 to 10 and a prior density 

on a grid of 64×64×64 points were built. In order to refine the uncomplete ( |h|, |k|, |l| ranging 

from 0 to 10) set of F(hkl) starting with our defined “non-flat” prior density or a “flat” density, 

the two approaches are tabulated below. In both “non-flat” and “flat” prior cases the value of the 

Lagrange parameter needed to get convergence of the iterative process was of the order of 10
-5

. 

Higher value could probably be used if we had given larger artificial uncertainties to the 

structure factors (5%). 

In order to compare the agreement of the refinement process the final 2  and the reliable factor 

(R-factor) have been used, which is commonly used in crystallography, defined as: 

2

2

obs

calcobs FF
R


 

  

3.1 Evolution of MEM refinement from defined prior density 

Prior electronic density for bismuth on a grid has been built from atomic scattering factors, is 

used as prior density for bismuth structure factors refinement with the maximum entropy 

software ENIGMA as shown in figure 2. 

 
Figure 2: Defined prior electron density, contour 0.02e

-
/Å

3
 

The defined prior density is used for bismuth structure factors refinement with the maximum 

entropy software ENIGMA to get electronic densities at different iterations. . Electronic densities 

obtained after 50, 500, 10000 iterations has been shown in figure 3. 
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Figure 3: Electron densities obtained after a) 50 cycles, b) 500cycles, c) 10000 cycles, contour 

0.02e
-
/Å

3
, using defined prior density. 

 

Corresponding graphical representations of R-factor and 2  are shown in figure 4. It can be 

clearly seen  that even at the beginning the value R- Factor of Prior density is less than 1%, then 

it decreases very rapidly. Similarly it can be seen that there is significant decrease in the 

constraints 2  after some iterations. 

a 

b 

c 
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Figure 4: Graphical representation of a) R-factor, b) 2  , for defined prior density. 

3.2 Evolution of MEM refinement from flat prior density 

By using MEM software ENIGMA starting from flat density, one can obtain electron densities 

100, 10000, 200000 iterations as shown in figur5. Corresponding graphical representations of R-

factor and 2  are shown figure 6. It shows that even after several hundred of thousands 

iterations value of R-factor is much more few %. Similarly, it can be seen that there is no 

significant decrease in the constraints 2 .One can see that redistribution from flat initial density 

occurs in the vicinity of the principal R–3m axis, but it takes hundreds of thousands cycles before 

real concentration at the real atomic positions occurs. 

By comparison of evolution of electron density for bismuth both for flat prior density and 

defined prior density, it can be seen that electronic densities obtained by the use of defined prior 

density is quite good as compared with the electronic densities obtained by flat prior density. It 

can also be noticed that the use of defined prior density acquires less time in the process of 

building required density and acceptable values of the R-factor. To obtain convergence one can 

see that using flat prior density is a very slow process and the initial density could not be 

achieved with enough accuracy. 

 

4 Conclusion 

According to the results obtained, the method developed to provide reasonable “prior” electron 

density to be used in the MEM refinement of X-ray diffraction data in order to reconstruct 

experimental electron density, seems to be efficient. In the case of bismuth, from the comparison, 

it has been observed that  redistribution (concentration) of electron density at the real atomic 

positions takes hundreds of thousands of cycles of MEM refinement in the case of “flat” initial 

density whereas  with the use of “defined prior” density concentration of electron density at real 

atomic positions takes only few hundreds of cycles to reach acceptable reliability R-factor, which 

gives an agreement of the efficiency of our program. 

a

) 

b

) 
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Figure 5: Electron densities obtained after a) 1000 cycles, contour 0.385e
-
/Å

3
 b) 10000 cycles, 

contour 0.08e
-
/Å

3
 c) 200000 cycles, contour 0.02e

-
/Å

3
, contour 0.04e

-
/Å

3
 using flat prior density. 

 

 

Figure 4: Graphical representation of a) R-factor, b) 2  , for flat prior density. 
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