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Abstract. A generalized family of2; + 2)-point n-ary approximating
subdivision schemes by using Newton interpolating polyiaderis pre-
sented for the generation of curves and surfaces, whet@andn> 2.
This family unifies some well known curve and surface scherRegher-
more, the error bound evaluation technique for the propssbémes is
also discussed.
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1. INTRODUCTION

Subdivision schemes have been a well-liked technique in BAGomputer Aided Geo-
metric Design) to produce curves and surfaces. Subdivisibemes have various appli-
cations in graphics, image processing, engineering et¢larglhas become an important
area of study. A subdivision process refines the initial gotyrecursively to a set of refined
polygons which converge to a smooth limiting curve/surfatew points are added at each
refinement level into the existing polygon while the old gsimay remain intact or vanish
in all subsequent sequences of control polygons. Furthexnaoity of the scheme refers
to how many points are fitted at new level- 1 between each pair of adjacent points from
levelk, i.e, when two points are fitted then the resulting schemalisabinary, when three
points are fitted then the resulting scheme is called teraadywhem points are fitted, the
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resulting scheme is called-ary subdivision scheme.

In the preceding years, vast amount of work has been donenergting subdivision
curves. A significant assessment of different approxingasmbdivision scheme can be
found in [1, 4, 11, 19, 20, 21]. Subsequently, subdivisionsiarface design is also cred-
itable. It is a modified form of subdivision curve and gainearenpopularity, most notably
in the computer animation industry. The idea of subdivisianve to subdivision surface
was initially given by [3]. Also, [6] extended Chaikin’s awer-cutting method successfully
for curves to surfaces.

Note that the formulation of existing approximating sulisiomn schemes for curve/surface
is different to each other. Several subdivision schemdsdiireg triangular mesh schemes
[8, 12, 16, 17], quad mesh schemes [3, 7, 13, 18, 27, 30] andioech triangular-quad
(tri-quad) mesh schemes [26, 29] have been proposed. Thheees are the result of
modifications, convex combination of two subdivision sclesppolynomial interpolation,
convolvement and tensor product of the mask of present sehie®o, it is interesting to
present a general formula, which covers most of the exigoigemes and constructing
methodologies, which is independent of all the previoushoas. So, it is new class of
construction of subdivision schemes. Least squares basetivision schemes are intro-
ducedin [2, 24, 25]. In this paper, we present a general ftaffion curve designing, which
is generalization of existing well-known schemes, thenviloek is extended for regular
guad meshes. Formulation of both formulae for curves anfases is the result of using
one and two dimensional Newton’s interpolation formulae.

The paper is planned since go after: Section 2 gives a brefdmental facts of this
paper. Section 3 presents a new generalized for(f,of 2)-point approximating scheme
for subdivision curves and Section 4 is devoted for tensodpct scheme for subdivision
surfaces. In Section 5, analysis and applications of pmgeshemes are discussed. Fi-
nally, Section 6 consists of the error bounds for the prop@g®roximating subdivision
scheme.

2. PRELIMINARIES

Then-ary approximating subdivision scheme for univariate casgps an initial poly-
gonp® = {pF};cz to a new refined polygop ™t = {pf+1}iez, is defined by

pﬁjﬁ)\=§:a>\7jpf;rj, A=0,1,2,--- ,n—1, (2. 1)
=

where{a; };cz is the set of masks of the subdivision scheme. Haey subdivision scheme
converges uniformly if

ZG‘AJ:1’ )\2071,2,"',71—1. (22)
JEZ
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Let V;(t) be the fundamental Newton polynomial corresponding to theerj}
defined by

Jt+1
-7

J+1
Paya(t) = > @;N,(t), (2.3)
Jj==1
whereP,,; € ]_[2]+1( space of polynomials of degree2) + 1).
Here,a; = y[to,- - ,t,] are the divided differences and are symmetric in natures@he

can be evaluated by the following method.

) Y= ) -1 =1
aj:y[t,j,--- ’tj]: XJ: y1< ll[ (i—H)) ty # tj, @4

i=—) i=—), i#K

andN;(t) can be originated by the subsequent way,

i—1 1 K=
N;(t) = H(t_’i):{ jﬁl (t— k) K # J. (2.5)

K=—)

3. GENERALIZED APPROXIMATING SCHEMES

In this section, we will construd®j + 2)-point binary and ternary approximating sub-
division schemes for curve and then propose a generalizeiyfaf (2) + 2)-pointn-ary
approximating subdivision schemes.

3.1. (27 + 2)-point binary approximating scheme. Chaikin’s 2-point binary approxi-
mating subdivision scheme [4] can be obtained by settiag0 andn = 2in (2. 3) and
evaluating the Newton’s polynomial a= %, %. Thus (2. 3) takes the form

1
Pi(t)=> a;N; (1), (3. 6)
j=0

where the node points of the Newton polynomials &kgt¢) and N1 (t) which reproduce
the linear polynomial as follows

Pi(t) =3 ()" [Z(—nu (5)%] Ot ), 3.7

pn=0 v=0
wherel'(¢, 11) is the Gamma function defined as
It+1)
t+1—pwl(p+1)
Now, we have the following proposédpoint binary subdivision scheme

.3 o1

L(t,p) = I(
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Here, we consider the case for= 0 and subdivision levek = 0 as it is adequate to
construct stationary and uniform subdivision schemesogiyring polynomials of a fixed
degree as follows

3 3 1
Py <1> = 2P0 + 1P

1 1 3
Py <1> = 2P0 + 1P

Now, suppose that at next level of subdivision({e; 1)-th level), the poinpgi‘fw which

is the affine combination of two pointg™! andp/!, at the same level, is attached to the

constraint valu%iiﬁ. Thus, we get Chaikin’g-point binary scheme [4] as follows

+1 _ 3 1
{ Py =P + 3P (3. 8)
K+l _ 1.k 3.k .
p2i+1 - 4p71 + 4pi+1'

The scheme ( 3. 8) can be written as

1 n
Phiy =2 (D" [Z(—l)" (‘V‘)pm} Db, A=01, (3.9

pn=0 v=0
where
I'it+1) 22 +1
T(t,p) = , —2r-

) = S T = T+ ) 1
Similarly, Dyn’s 4-point binary approximating subdivision scheme [9] is afxtal by set-
tingy) = 1 andn = 2in (2. 3), where the node points of Newton polynomial are
{N;(t)}%,, which can be written as

3 Iz
K L v /’L K
inJ:—lA = Z(_l)} [Z(_l) <V>pi+(l/1) P(t + ]-a /1‘)7 A= 07 ]-a (3 10)
pn=0 v=0
where
I(t+2) 2\ +1
F(t+1’“)_r(t+2—u)r(u+1)’ 4

Similarly, we get binar-point scheme by setting= 2 in (2. 3) as follows

5 Iz
P = S0 [Z(—l)”(‘;)pm_m t+20),  A=0L (311
pn=0 v=0
where
I(t+3) 2\ + 1
D(t+2,p) = _ 241
20 = S = i 1) 1

Therefore, using ( 3. 9)-( 3. 11), the general forn{f + 2)-point binary approximating
scheme is proposed as follows

27+1 n

M = Yy [Z(—l)"(‘:)p;uw

pn=0 v=0

Tt + 7, ), (3. 12)
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_ Tty
wherel'(t + . ;1) = G

subdivision levek > 0.

A = 0,1 corresponding te = %, 7>0and

3.2. (29 + 2)-point ternary approximating scheme. A 2-point ternary approximating
subdivision scheme can be obtained by setjirg0 andn = 3 in (2. 3 ) and considering
the Newton’s polynomia{ N;(¢)} at node pointg0, 1} as follows

1
Pi(t)=> a;N;(t). (3. 13)
j=0

Now by using (2. 4)and (2. 5)in (3. 13), we have
Pi(t) = po+ (p1—po) (L) (3. 14)
For uniform and stationary terna®ypoint approximating scheme, consider the following
m=ri(ivg). sa=n(ity). se-n(iv}). G

From (3. 14), we have

1 5 1

P — = — —
1 <6> 6p0+6p1,

1 1 1

P — = — —
1 <2> 2P0+ 2101,

5 1 5

P — = — —
1 <6> 6P0+6P1,

k+1 _ 5 kK 1,k

p371+1 = Elpi + glpz'+1,
K v

p3i+11 = 3p; + 3D, (3. 16)
~+1 __ 1,k 5, K

D3iva = gPi T §Pik1-

Above expression can be formed as following

1 n
pgikl)\ = Z(_l)li lz(_l)y (5)pf+ul F(ta M)7 A= Oa 17 2) (3 17)

pn=0 v=0

where

T(t+1) 241
P(t+1—p(p+1) 6

Similarly, 4-point ternary approximating subdivision scheme is olgdihy settingy = 1
andn = 3in (2. 3). The node points of Newton polynomial af&;(¢)}2, which

L(t,p) =
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reproduce cubic polynomial using (2. 4) and ( 2. 5) as follows

2

Py(t) = > a;N;(t).

j=—1

1
p_1+Po—p-1)(t+1)+ 5 (p1 — 2po +p-1) (* +1)

1
+5 (P2 = 3p1 +3po —p1) (t* —1). (3.18)

For uniform and stationary ternatdypoint approximating scheme, consider the following

o1 o1 .5
p§¢:P1<Z+6>7 Péi+1:P1<Z+§)w Péi+2:P1(Z+6)~ (3.19)

From (3. 18), we get

Py (1) = —ﬁpq + ﬁpo + 11?1 - ﬂpa
6 1296 432 432 1296

Ps (1) = —ipl + gpo + gpl — —D2
2 16 16 16 16

Ps (§) = —3—5p—1+1p0+ﬁp1 —ﬁpz-
6 1296 432 432 1296

This implies the following iterative form of ternar~point approximating subdivision
scheme

r+1 __ 55 . Kk 385, Kk 7K 35 K
p%—l = —1%%107:—1 +9mpi ‘g 132 Pi1 - 296 Pit2s
p3/¢r1 = _@579?71 + Tﬁlgg + E%%%l - 1—6]9?4%257 (3. 20)
DP3ito = ~ToggPi—1 T 13505 T 133Pi+1 — ToogPit2:
Briefly, we can write ( 3. 20) as
3 H [
Py = ) (=1 [Z(—l)”(y)pf+(u_l) T(t+1,p), A=0,1,2 (3.21)
pn=0 v=0
where
I't+2 22+ 1
F(t + 17:“) = ( ) ’ = -
Pt+2—w)l(p+1) 6

Therefore, using ( 3. 17 ) and ( 3. 21 ), the general forrf2gf+ 2)-point ternary approxi-
mating scheme is proposed as follows

27+1 N
K v M K
P =3 (1 [Z(—l) (")t

pn=0 v=0

Tt + 2. ), (3. 22)

_ T(tg4D)
WhereI‘(t + 7, ,M) = Wﬁ1*—W’

subdivision levek > 0.

A =0,1,2 corresponding to = Lgfl 7>0and
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3.3. Generalized(2j + 2)-point n-ary approximating scheme. Here, the generalized
form of (27 + 2)-point n-ary approximating subdivision scheme by using Newtonrinte
polating polynomial is presented. This generalized forrh g helpful in obtaining sub-
division rules more rapidly. The generalized form(@§ + 2)-pointn-ary approximating
subdivision scheme is given as follows.

27+1 nw
K L v lu K
pn;:l)\ = Z(_l)l lZ(—l) (V)p”(”ﬂ) L(t+ g, p), (3. 23)
n=0 v=0
where
Tt+3+1) 22 +1
I'(t+ ) = , =
A (s pn T gray on
Here,A =0,1,--- ,n — 1,n > 2 indicates the arity of the scheme (i.e binary, ternary and

so on),7 > 0 indicates how many points we require in the schemeraixd0 indicates the
subdivision level.

Remark 3.1. Our proposed generalized form @) + 2)-pointn-ary approximating sub-
division scheme ( 3. 23 ) gives some well known approximatiglivision schemes as
follows.

e For y = 0andn = 2 in the proposed formula ( 3. 23), it gives Chaikig$oint

schemg4]

e Forjy=1andn =2, (3. 23) gives Dyn'd-point binary schem§9].

e Forjy=1andn = 3, (3. 23) gives Kwan'd-point ternary schenj&4].

e Forjy=2andn = 3, (3. 23) gives Kwan’s-point ternary schenj5].

4. TENSOR PRODUCT(Z] + 2)-POINT n-ARY SUBDIVISION SURFACE

Given a set of initial pointg} ; € R®, 4,5 € Z, X > 2 andx > 0, the tensor product
definesn-ary subdivision surface given by

J J
pfmt-lk nj+y Z Z a)\,ra'y,sp?+r,j+sv )\v Y= 07 ]-a Tty (n - 1) (4 24)
r=0 s=0

Here,{ax,}._, and{a, s}’_, are the sets of the subdivision masks and satisfy ( 2. 2).
Giveninitial pomts;o”,the tensor product (4. 24) defines a countless set of poifits as
# — o00. The set of pointgp? ; } is related in a way with mesh points(af: , -2 LY, i,j € Z.

ne ) nk
This tensor product thus defines a scheme whepgmg_mﬂ are inserted at the new mesh
points (263, 247) for A,y = 0,1,...,n — 1. Figure 1 shows both coarse and refined

points of binary subdivision scheme of (i.e. n=2) (4. 24).

Now, we have the following proposed generalized fornfif+ 2)-pointn-ary subdivision
surface attained by tensor product using Newton interpaatolynomial.

291+1252+1 175} M2 o
+ u —+v
pn11+)\ nojty T Z Z #1 - Z Z e v p’bJr(Vl —91):d+(va—32) | X

#1=0 p2=0 v1=0v2=0

T(t1 + g1, p)T(t2 + g2, p2), (4. 25)
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k+1 k+1

k+1 i X . .
Diizjiy Paivipji2 Priv22j+2

_________ o----—-—-————"[®

k+1
Pait12;

FIGURE 1. Firm lines represent the coarse polygon; spotted line®ere
sent the refined polygon.

where

Fti+n+1)
T(ty + 91, 1) =
(b1, p01) Tt 4+50+1— )
Ltz +32+1)
Dtz + 92 +1 = p2)(p2 + 1)’
A=0,1,---,npy —1,v=0,1,--- ;na — 1, 71,72 > 0, k > 0 indicates the subdivision
|eVe|,t1 = 22)\T+11’t2 = 2;—7;21 andnl,nQ = 273,. S M.

p1+1)°

Ltz + g2, p2) =

Remark 4.1. Our proposed generalized form @ + 2)-pointn-ary subdivision surface
attained by tensor product ( 4. 25 ) gives some well known @pprating subdivision

schemes as follows.
e By taking tensor product of Chakirgspoint binary schempl], we get the existing
Doo-Sabin schem®] which can be obtained by taking, 7o = 0 andni,n, = 2

in(4.25).
By settingni,no, = 2 andj;, 52 = 0in (4. 25), we get the following mask of

tensor product ofl-point binary scheme

Mask = @ 25,35,35,49, —175, =525, —245, —735, —525, —175, —735,
—245,35,25,49, 35, —175, —245, —525, —735, 1225, 3675, 3675, 11025, 3675,
1225,11025, 3675, —245, —175, —735, —525, —525, —735, —175, —245, 3675,

11025, 1225, 3675, 11025, 3675, 3675, 1225, —735, —525, —245, —175, 35, 49,

25,35, —245, —735, —175, —525, —735, —245, —525, —175, 49, 35, 35, 25).
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@ (b) (c) (d)

FIGURE 2. (a) shows the primary polygon and (b)-(d) represent funda-
mental limit functions of 2 and 4-point binary as well as 4fidernary
subdivision techniques respectively.

e Similarly by taking the values;,n, = 3 andj;, 72 = 1, in (4. 25), we get the
tensor producti-point ternary scheme.

5. ANALYSIS AND APPLICATIONS

In this section, compact support and continuity of the suibidin scheme is illus-
trated from the following Lemmas.

Lemma 5.1. [28] Let the point;’ ;, x > 1 recursively defined bi.24) with given initial
pointSp?’j =pi %, J € Z, thenthe tensor product of the proposed scheme have foeadt sid
support regions.

Remark 5.1. The Doo-Sabin subdivision schefgfor surface case is obtained by taking
tensor product of4]. Likewise, the support of the proposed tensor product sel{gm25)
is same as obtained by taking tensor product of the compggicsts of given two regions.

Lemma 5.2. [5] Let the pointpf ;, > 1 be recursively defined kiyt.24) with the given
initial pointSp?J = pij, i,j € Z, then the same level of continuity is attained for tensor
product schemes as their counterparts.

5.3. Applications. Figure 2 shows the basic limit functions of bin&ryt-pointand ternary
4-point approximating subdivision schemes for curves levhisual performances of ap-
proximating subdivision schemes for curve fitting on disei@ata set are shown in Figure
3 at different levels of subdivision. Figure 4 shows the bdisnit functions of tensor
product binary2, 4-point and ternary 4-point approximating subdivision suoke for sur-
faces, while visual performances of these schemes forcaiffiing on discrete data set
are shown in Figure 5 at different levels of subdivision.

6. ERROR BOUND

Subdivision process is the perfect approach for geometric ghape designing.
When subdivision technique approximates the exact cuneeetarises an important ques-
tion just how to approximate the limit curve with its initipblygon. The method for es-
timating error bounds ofi-ary schemes by calculating the maximal differences betwee
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(a) 4-pointl **-step (b)2"d-step (c)3"-step

(a) 6-pointl*t-step (b)2?-step (c)3m-step

FIGURE 3. Spotted lines show primary polygons whereas continuous
curves are produced by ternadypoint and6-point approximating sub-
division schemes.

(@) (b) (© (d)

FIGURE 4. (a) shows the primary mesh and (b)-(d) represent basic limit
functions of 2 and 4-point binary as well as 4-point ternampdivision
techniques respectively

initial points and constants that depend on the weight o$thmlivision scheme is given in
[10, 22, 23]. By utilizing a similar strategy, we have thddaling lemma for 25+ 2)-point
n-ary scheme with some expressions, inequalities and sesult

Lemma 6.1. Given initial polygomp? = p;, i € Z, letpf, k > 1 be defined by (2. 1).
Suppose? linearly interpolates tg"® andp is defined to be the limit curve of (2. 1).
Then the error bound aftet-fold subdivision between initial polygon and its limit eris

|p“—p“|m§aﬁ<§%%), (6. 26)
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where

and

where

Also

where

E= K

(a) Primary polygon (b)st-step (d)2"?-step

) ¢ ) ¢

(e)3?-step (d) Limit surface

FIGURE 5. Performance of tensor produgtpoint binary approximat-
ing scheme: (a), (b), (c), (d) and (e) show the initial polggtst-, 2nd-
and3rd-subdivision level and limit surface respectively.

9 = max || piyy —p} ||

J
= max mej ,n=0,1,...,n—15,

7—1
0 = max g ™l A=0,1,...,n =153,
j=0
J A
7—)\,0:2&)\,9:_;; )‘_07]-; an_]-a
=1
J
T™hG = 2 G ji>1

91
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Binary 2-point — — Binary 4-point —— Binary 6-point

FIGURE 6. Comparison of the error bounds of 2, 4, 6-point binary ap-
proximating schemes (afterfold subdivision)

6.2. Error bounds of (2 + 2)-point n-ary approximating scheme. In this section, we
have presented error bounds computed by ( 6. 26 ) betweéal piygon and its limit
curve after-fold subdivision for even points binary, ternary and quagéey schemes. From
Table-1, it can be seen that error boun@-gdfoint scheme is less than thauepoint scheme
and error bound of-point scheme is less than that@point scheme (for binary case) at
each subdivision level. Moreover from Table-2, error boah#-point scheme is less than
that of4-point scheme which is less than thattepoint scheme (for ternary case). Also in
Table-3 same behavior is observed between 2,4,6-poinemeaty approximating schemes
as seen in Table-1 and Table-2. It is further noted that eBelerror bounds are computed
with ¢ = 0.01. Moreover, we have also given the graphical comparison eh euoints
schemes for binary, ternary and quaternary approximatihgrees in Figures 6, 7 and 8
respectively.

TABLE 1. Error estimation of even-point binary schemes

Scheme j|k 1 2 3 4 5 6
2-point 0 0.002500 0.001250 0.000625 0.000312 0.00015600018

4-point 1 0.023863 0.015660 0.010277 0.006744 0.004426020@%
6-point 2 0.066975 0.050133 0.037526 0.028090 0.02102615038

TABLE 2. Error estimation of even-point ternary schemes

Scheme j|k 1 2 3 4 5 6
2-point 0 0.001666 0.000833 0.000416 0.000208 0.000104000%P

4-point 1 0.009217 0.004068 0.001795 0.000792 0.0003490005%
6-point 2 0.022168 0.011211 0.005669 0.002867 0.0014500003B
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[+~ Temary 2-point — — Temary 4-point —— Ternary 6-point

0.020

0.0151

o
g

*0.0104

0.005

FIGURE 7. Comparison of the error bounds of 2, 4, 6-point ternary ap-
proximating schemes (aftarfold subdivision).

TABLE 3. Error estimation of even-point quaternary schemes

Scheme j|k 1 2 3 4 5 6
2-point 0 0.004167 0.001042 0.000260 0.000065 0.000016000@4

4-point 1 0.055921 0.018567 0.006165 0.002047 0.00067900Q2%6
6-point 2 0.130828 0.049853 0.018997 0.007239 0.002758010%1

[ Quaternary 2-point — — Quaternary 4-point —— Quaternary 6-point

FIGURE 8. Comparison of the error bounds of 2, 4, 6-point quaternary
approximating schemes (afteffold subdivision).
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