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Abstract.: The rank-based method is a well-known robust estimation
technique in analyzing linear models, it serves as an alternative to Re-
stricted Maximum Likelihood Estimation (REML) for non-normal error
distribution. It is based on minimizing a pseudo-norm and can be up-
graded by selecting a suitable score function according to the probability
distribution of the error term. Some generic score functions are recom-
mended in the literature for specific shapes of the error distributions in
linear models. In this study, the efficiency of score functions is exam-
ined through simulations for various level-1 and level-2 sample sizes ap-
plied on a random intercept multilevel model for symmetric, asymmetric,
and light-tailed to heavy-tailed error distributions. Score functions like
wscores, nscores, Bentscores1, and Bentscores4 show minimum SE only
when the level-2 sample size is 10 or more. Bentscores1 and Bentscores3
are more suitable than other score functions even for the smallest sample
size and their magnitudes reduce as sample size increases for right-skewed
and left-skewed error distributions, respectively. Another selection crite-
rion based on Hogg type adaptive scheme is also applied for the same
class of error distribution. The efficiency rank-based fit with the selected
score function is compared with the Wilcoxon score based on minimum
standard error (SE).For the case of right-skewed, moderately heavy-tailed
and light-tailed distribution, selected fit from the adaptive scheme is more
precise than Wilcoxon fit. For contaminated normal distribution selected
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fit is more precise in small sample sizes only. In group size 30 or more,
the selection of score function does not make a significant change in SE.

AMS (MOS) Subject Classification Codes: 35S29; 40S70; 25U09
Key Words:Adaptive Scheme, Linear Model, Rank Based Method, Score Function, Skew-

ness, Tail Heaviness.

1. INTRODUCTION

Traditional statistical procedures based on the least squares fitting are widely used.
These can easily be impaired due to the presence of outliers, e.g., a single contaminated
value can spoil the validity of the methodology based on the least squares fit [1]. This
issue provokes the need for robust estimation methods that are less sensitive to outliers.
Wilcoxon proposed nonparametric methods for simple location problems comprising test
statistics based on the ranks of data [2]. These test statistics are distribution-free and ef-
ficient like the traditional methods when the error term follows a normal distribution or
even non-normal distribution [3]. Nonparametric methods are robust and powerful to pro-
vide a unified methodology in parallel with traditional methods [1]. Restricted Maximum
Likelihood (REML) is a traditional method to estimate multilevel models but produces bi-
ased estimates, in case of non-normality of error terms [4]-[5]. One of the most commonly
used robust methods is a rank-based method developed for linear models and provides an
attractive alternative to ordinary least squares (OLS) and maximum likelihood estimation
techniques (ML). Kloke et al. extended this rank theory for mixed models and developed
the asymptotic theory of under the assumption that marginal distributions of residuals are
the same [6]. This theory only requires the assumption that the distribution of the error term
is continuous and the random errors have finite Fisher Information [1]. Additional method-
ologies like inferences, testing of hypotheses, diagnostic checks are developed by and sum-
marized in [7]-[8]. Rank-based fit replaces raw scores of the dependent variable with their
ranks based on non-decreasing score function [9]. It is generally highly efficient but the
optimal selection of score function leads to more powerful and efficient analysis [10]. Ah-
mad et al. defined nine methods to define new distributions for modeling of heavy-right
tailed data to obtain estimates of parameters of a special sub-model by maximum likeli-
hood [11]. This efficiency can be boosted up according to the information available about
the distribution of error term, e.g., the shape of the underlying probability density function
(pdf) f is known. For example, if the random error term in the mixed-effect model follows
Laplace (double exponential) distribution, the corresponding suitable score function in the
rank-based method would be sign score leading towards the efficient analysis. In short, this
optimality can be achieved when the shape of the underlying pdff is known (often in prac-
tice is unknown). The rank-based analysis turns out to be more accurate and efficient when
the selected score function is close to the form off . If the probability density function (pdf)
of the error termu is known asf(u), then the expression for the optimal score function
φf (u) can be mathematically derived. For this purpose, several computational procedures
are available in the literature in the R language. Kloke et al. developed an R package
named Rfit. This package includes the functions for complete rank-based analysis of gen-
eral linear models, including the computation of confidence interval, testing of hypothesis
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and many more [12]. It also includes a library of score functions developed specifically
for some particular distribution shapes of the error term, for example, normal, asymmet-
ric, heavy-tailed and light-tailed distributions. In this study, the efficiency of these score
functions is examined in the context of the random intercept multilevel model with the help
of Monte Carlo simulations. The estimation of fixed effect, random effect parameters and
their standard error (SE) for different level-1 and level-2 sample sizes are discussed. Hogg
et al. presented another adaptive scheme for the two-sample location problem in linear
models [13]. Kloke et al. modified Hogg’s adaptive scheme and developed an R function
named adaptor to select a score function from a class of suitable score functions according
to the shape of the error distribution [14]. A simulation study is performed to compare the
efficiency of the selected score from the adaptor function with the Wilcoxon score function
on the multilevel model over a wide range of level-1 and level-2 sample sizes. The error
term in the model is generated from normal, asymmetric, from heavy-tailed to light-tailed
distributions. A value of precision is calculated to compare the variances of fixed effects
obtained from the rank-based fit with selected scores and the Wilcoxon score. The results
are discussed in the context of level-1 and level-2 sample size because in multilevel models
level-2 sample size is important for consideration.

2. METHODOLOGY

2.1. General Linear Model. Al-Shomrani presented the linear regression model as shown
[10]:

Y = α1 + Xβ + ε

whereY is the dependent variable,X is the design matrix,β is the vector of slope parame-
ters,α1 is intercept andε is ann× 1 vector of errors that arei.i.d. The density function of
the error term is denoted asf and the distribution function is denoted asF . The design ma-
trix is assumed to have a full column rank and centered as the model includes the intercept.
Rank-based estimates are invariant to the intercept.

2.2. Random Intercept Model. The general form of the random intercept multilevel model
in combined form is presented in Eq (2) [15]:

yij = γ00 + β1xij + εij + u0j

whereyij is a dependent variable measured at level-1 (i subscript refers to individual-level
variation andj refers to group-level variation),xij is an explanatory variable measured at
individual level,β1 is the fixed slope parameter for each group. The termε is a random
error obtained from the level-1 regression equation.γ00 the overall intercept is a fixed ef-
fect, invariant over the clusters, i.e., it shows a common component across clusters. Also
is a random error that shows the deviation of group-level slopes from the overall slope. It
is assumed to be normally and independently distributed across individuals with density
functionf , and distribution functionF .
Kloke et al. extended the rank-based fit for linear models with cluster-correlated errors
[6]. Hence it is valid to apply this robust fit on multilevel models as it generates cluster-
correlated errors due to the hierarchical structure in data. Rank-based fit is quite similar
to the least squares method with the only difference that the Euclidean norm in the least
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squares is replaced with another pseudo norm (distance function) known as Jaeckel’s dis-
persion function; see [1] for details. For the model in Eq (2) the robust estimate ofβφ can
be defined as [6]:

βφ = argmin||Y −Xβ||φ
This joint rank-based estimator ofβ is called Jaeckel’s dispersion function [16]. This is
a convex function ofβ as it is defined in terms of the norm. It is efficient and robust in
Y-space [12]. Al-Shomrani defined this pseudo norm by [10]:

||Y −Xβ||φ =
N∑

i=1

[R(yij − x′kiβ)](yij − x′kiβ)

whereR denotes the rank ofvt amongv1, ..., vn and these are invariant to constant shifts.
yij = Dependent variable for the individuali in a clusterj
x′ki = Correspondingpx1 vector of covariates
For any given score function, Kloke et al. developed the asymptotic theory of rank-based
method along with consistent estimators of SE and test statistics of the general linear hy-
pothesis [6]. This asymptotic theory makes an additional assumption that the marginal
distribution of error terms is the same. The simple mixed model with a compound sym-
metry covariance structure usually satisfies this assumption [14]. The score function is
a non-decreasing square-integrable function bounded in the interval(0, 1),standardizing
the score function such that

∫
φ(u)du = 0 and

∫
φ2(u)du = 0. Scores are calculated as

a[t] = φ[ t
N+1 ] and these scores sum equals zero. Some score functions satisfy assumptions

about the distribution of the raw scores and few of them do not satisfy any assumptions such
as the Wilcoxon score function. If the underlying distribution of the error term is known,
Hajek and Sidak showed that optimal scores can be found as [17]:

φf (u) = φ(u) =
−f ′(F−1(u))
f(F−1(u))

wheref(u) andF (u) are pdf and cumulative density function (cdf) of the error distribution
respectively.

2.3. The R Packages.The package Rfit is used for computing rank-based procedures for
simple linear models [12]. The use of different score functions, inferences, and diagnostic
measures is provided by several functions available in the package. The authors also in-
cluded some commonly used score functions in an object of class ‘scores‘ in Rfit. Kloke
& McKean, later on, developed another R package jrfit for analyzing linear models with
cluster-correlated error terms [8]. The package includes the estimation of fixed effect and
random effect parameters including the covariance structure of linear models. In this study,
the rank-based fit is undertaken by jrfit and score functions from package Rfit are applied.
Table-1 describes all the score functions provided in package Rfit by Kloke& McKean [12].

Table-1 shows the score functions available in package Rfit along with their keywords,
the shape of the data distribution for which they are optimal. The probability distributions
from which error terms have been generated in the simulation study are mentioned in col.
4. The following are expressions for score functions mentioned in Table-1 [18]:
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Score Function R Key-Word Recommended Data Shape Data Generating Distribution

Wilcoxon Score wscores Symmetric Moderate tailed Logistic (2,1)
Normal Score nscores Symmetric Light-moderate tailed Normal (0,1)
Bentscores1 Bentscores1 Highly right-skewed Exponential (1.5)
Bentscores2 Bentscores2 Symmetric Light tailed Uniform (0,1)
Bentscores3 Bentscores3 Highly left-skewed Skewed con normal (mu=0,sd=1,alpha=-20)
Bentscores4 Bentscores4 Symmetric Moderately heavy-tailed Slash (0,1)

TABLE 1. Available score functions in package Rfit with recommended
usage, and respective data generating distributions

Wilcoxon score: φ(u) =
√

12[u − 1
2 ]. It is a linear function of ranks. The function

φ(u) is called a Wilcoxon score function, anda(i) are called the corresponding Wilcoxon
scores.Normal scores:φns(u) = Φ−1(u) ; whereΦ−1(u) is the inverse cdf of normal
distribution.
Bentscores1-Bentscores4 are expressed as below:

φ1(u) =
[

s3 u > s1

s3 + s3−s2
s1

(u− s1) otherwise

]

φ2(u) =



−s3
s1

u < s1
−s4
s2−1 (u− 1) + s4 u > s2

0 otherwise




φ3(u) =
[

s2 u < s1

s3 + s2−s3
s1−1 (u− 1) otherwise

]

φ4(u) =




s2 u < s1

s4 u > s2

s3 + s4−s3
s2−s1

(u− s1) otherwise




wheres1, s2, s3, s4 are the parameters.

3. RESULTS AND DISCUSSION

The selection of optimal score function is discussed via two simulation studies pursuing
two different approaches developed for linear models but applied on multilevel models to
examine the efficacy of these methods for cluster-correlated data also compared with tra-
ditional method REML. In the first study, the rank-based fit is obtained by all the available
score functions in Rfit applied on different error distributions. The suitable score function
would lead to efficient analysis. The second simulation is conducted to find out the optimal
score function from a broad class of scores by using an R function adaptor based on the
shape of the error distribution.
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3.1. Simulation Study 1. The first goal is to assess the appropriateness of score functions
developed for linear models (Eq 1) mentioned in Table-1 according to their recommended
usage when applied on multilevel models. Data is generated for the multilevel model with
cluster correlated errors (Eq 2) using a block design including a covariate and a treatment
effect [8]. The sample size at level-1 (n1) contains levels 5, 10, 30 and 50 within each
level-2 sample size (n2) 5, 10, 30, and 50. Thus it comprises 16 combinations, ranging
from 25 to 2500; a small size to quite a large sample size. All the coefficients of fixed
effects are chosen as zero.
Steps of Simulation Study 1

• Simulate independent variable X by a standard normal distribution, overall treat-
ment effect∆ = 0.5 and a baseline covariate with a normal distribution.

• The blocking effect and random error are simulated from the desired distribution
(mentioned in Table 1).

• Estimate model (Eq 2) by R function jrfit with score function from Table 1 (repeat
with each of the six scores). The same model is also estimated with REML using
R function lmer.

• Obtain the fixed effect estimate of and its SE from REML and by each rank-based
fit.

• Repeat step 1-4,n =1000 runs with the help of nested ”for” loops one for each
level-1 sample size within each level-2 sample size.

3.2. Results of Simulation Study-1.Estimates and SE of the fixed effect (the slope co-
efficient) are obtained by using appropriate score function and compared with estimates
found from other score functions and REML for each grouping of level-2 within level-1
sample size.Since data is generated according to some particular probability distribution,
SE against score function suitable for that specific probability distribution is expected to
be minimum among others. Wilcoxon score (wscores) is appropriate for moderate tailed
data. Random errors are generated with logistic distribution with parameters (location=0,
scale=1) to have moderate (little heavier than normal) tails. The rank-based estimation is
applied through all score functions on this data; SE for wscores is expected to be minimal
because the shape of the error distribution supports its appropriate use.

Figure-1 shows a graph plotting the SE of measured, for four group units each contain-
ing four level-1 units. The SE for wscores appeared minimum for group size 30 and 50.
For group size 10, SE for bentscores1 appeared least but SE for wscores is very close to
that. If the score function chosen is close to the optimal score function then it would lead
to efficient analysis [8]. For group size 5, SE for bentscores1 and bentscores3 appeared
minimum. This might be due to the small sample size, the shape of simulated data might
not match with its recommended usage.For normal scores, error terms are generated from
a standard normal distribution (mean=0, sd=1).

Figure 2 depicts this pattern, all the SE values are very close to each other in larger
sample sizes in block 4. The SE obtained from nscores does not come out minimum but
very close to a minimal value. Wilcoxon scores appeared minimum in block 3 and block 4
because Wilcoxon and normal score functions are appropriate for almost the same shape of
the distribution. Wscores are suitable for moderate tailed and nscores are suitable for light-
moderate tailed distribution.Regarding bentscores1, random error from level-1 and level-2
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FIGURE 1. Error terms are generated by logistic distribution with para-
meters (2, 1)

are generated from an exponential distribution with parameter lambda=1.5, showing the
highly right-skewed form of data. As expected, SE for bentscores1 must be minimum in
all sample sizes ranging from smallest to largest.

Figure 3 showed a big difference in the SE obtained through REML fit as it produces
high value in case of skewed data. Over a wide range of all sample sizes, SE for bentscores1
appeared minimum as expected. Another remarkable point here is the effect of sample
size. SE being minimum among all other scores, still is reduced a lot from 0.259 (smallest
sample size) to 0.059 (largest sample size). For bentscores2, error terms are generated from
continuous Uniform distribution with parameters (0, 1) to form light-tailed symmetric data.

Figure 4 depicts minimum SE for bentscores2 for all sample sizes in group 2, group 3
and group 4. In group 1, only for sample sizes 25 and 50, SE for bentscores3 appeared
minimum, this upset was may be due to the effect of a very small sample size. Though
for remaining all sample sizes 150-2500, SE for bentscores2 appeared minimum. Also, SE
reduces in magnitude with increasing sample size. Bentscores3 is appropriate for highly
left-skewed data. Random errors are generated with contaminated normal error distribution
with parameters (location=0, omega=1, alpha=-20) showing left skewness.

It is clear in Figure 5, SE for bentscores3 is minimum as compared to other score func-
tions for each sample size. It also reduces significantly in magnitude from 0.294 (small-
est) to 0.0794 (largest) sample size. Afterward, the random errors are generated for the
symmetric moderate heavy-tailed form of data by using slash distribution with parameters
(location=0, scale=1). Bentscores4 is appropriate for slash distribution with parameters (0,
1) to form a moderately heavy-tailed shape of the data. SE for bentscores4 is expected to
get the minimum value.
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FIGURE 2. Error terms are generated by a normal distribution with pa-
rameters (0, 1)

Figure 6 clearly shows a large value of SE produced by REML for all sample sizes.
The score function Bentscores4 generated minimum SE for group size 10, 30 and 50. It
also reduces significantly from 4.131 (smallest sample size) to 0.400 (largest sample size).
Only for group size 5, bentscores3 is smallest, might be due to the very small sample
size. The rank-based method overall performed well with all score functions, as they are
efficient in terms of the scale parameter comparing with traditional method REML. All the
score functions produced minimum SE in large sample sizes, i.e., group size 10, 30 and
50. Within-group size 5, the result was not following literature in some instances as such
a small sample size at both level-1 and level-2 is unable to depict the correct shape of the
probability distribution.

3.3. A Hogg Type Adaptive Procedure. Different schemes in literature are developed for
selecting optimal score function, for which the rank based estimates are asymptotically ef-
ficient; see, for example, [19]-[22]. This procedure is called a data-driven adaptive scheme
[8]. It is similar to Hogg‘s adaptive scheme for two-sample location problems, a family of
optimal score functions is selected for a class of distribution and then it selects a suitable
score with the help of a data-driven ‘selector‘ [13]. Hogg et al. proposed a distribution-free
two-sample adaptive test [23]. It uses a classification scheme that selects the tail weight and
amount of skewness of the underlying distribution of error term, then it selects the suitable
rank test based on simple linear rank statistics with corresponding scores. This scheme,
in general, is developed to include heavy, moderate and light-tailed distribution for both
symmetric and asymmetric cases (right-skewed and left-skewed). Initial residuals are ob-
tained by initial rank-based fit for each cluster by using the Wilcoxon score. An adaptation
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FIGURE 3. Error terms are generated by an exponential distribution with
parameters (1.5)

has opted within clusters. This scheme is also modified for the family of skewed normal
distributions by [24].

3.4. Data-Driven Selector. Hogg developed two selector statisticsQ1 andQ2 that mea-
sure skewness and tail weight respectively [23]. These selector functions must be functions
of ordered statistics of residuals. Selector statistics for skewness and tail weight respec-
tively are presented as below [18]:

Q1 =
U0.05 −M0.5

M0.5 − L0.05

Q2 =
U0.05 − L0.05

U0.5 − L0.5

whereU0.05, M0.5 and L0.05 are the averages of the largest 5%, middle 50% and the
smallest 5% of the ordered Wilcoxon residuals respectively, and denote the skewness and
tail heaviness respectively [8]. Al-Shomorani proposed benchmark values that are similar
and asymptotically approach to Hogg based on sample size [10]. Although, a simple fam-
ily of scores is generated by a non-decreasing piecewise continuous function defined on (0,
1) called Winsorized Wilcoxon score (bent scores) functions. Initially, regions are defined
based on the values of selector statistics. For nine winsorized score functions there are nine
regions defined asDk, for k = 1, 2, ...9. Bent score functions numbered from 1-9 through
this scheme are selected[8].



56 S.Saleem and R.A.K. Sherwani

FIGURE 4. Error terms are generated by Uniform distribution with pa-
rameters (0, 1)

Q1 ≤ clq1, Q2 ≤ clq2 select score#1 for left skewed light tailed distribution
Q1 ≤ clq1, clq2 < Q2 ≤ cuq2 select score#2 for left skewed moderate tailed distribution
Q1 ≤ clq1, Q2 ≤ cuq2 select score#3 for left skewed heavy tailed distribution
clq1 < Q1 ≤ cuq1, Q2 ≤ clq2 select score#4 for symmetric light tailed distribution
clq1 < Q1 ≤ cuq1, clq1 < Q2 ≤ cuq2 select score#5 for symmetric moderate tailed distrib-
ution
clq1 < Q1 ≤ cuq1, Q2 ≥ cuq2 select score#6 for symmetric heavy tailed distribution
Q1 > cuq1, Q2 ≤ clq2 select score#7 for right skewed light tailed distribution
Q1 > cuq1, clq2 < Q2 ≤ cuq2 select score#8 for right skewed moderate tailed distribution
Q1 > cuq1, Q2 ≥ cuq2 select score#8 for right skewed heavy tailed distribution
whereQ1l, Q1u, Q2l, Q2u are benchmarks from ordered residuals obtained from initial-fit.

3.5. The R function Adaptor. Kloke et al. developed an R function ‘adaptor‘ in R pack-
age npsmReg2 to calculate this adaptive scheme using data of response variable Y and
design matrix X from the linear model as input [8]. This function gives output about the
selected score function, rank-based fit through this function and initial (Wilcoxon) fit. A
small simulation study is conducted to investigate the performance of the adaptive scheme
on the multilevel model with cluster correlated errors with each combination of level-1 and
level-2 sample sizes.

3.6. Simulation Study 2. Another simulation study is carried out to investigate the per-
formance of the adaptor function when it is applied to the multilevel model. The efficiency
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FIGURE 5. Error terms are generated by Skewed contaminated normal
distribution with parameters (mu=0,sd=1,alpha=-20)

of the analysis based on the selected score is compared with a Wilcoxon fit. The multi-
level model is generated from block design with the same settings from simulation study-1.
Steps of Simulation Study 2

• Simulate independent variable X by a standard normal distribution, overall treat-
ment effect∆ = 0.5 and a baseline covariate with a normal distribution.

• The block effect and error are simulated from the desired distribution (mentioned
in Table 1).

• Estimate model (Eq 2) by R function adaptor (repeat with each of the six probabil-
ity distributions).

• Obtain the fixed effect estimate of and its SE by each rank-based fit from the se-
lected score and Wilcoxon fit (default).

• Precision is calculated by taking a ratio of variances of both methods for comparing
the efficiency.

• Repeat step 1-4,n =10,000 runs with the help of nested ”for” loops one for each
level-1 sample size within each level-2 sample size.

3.7. Results of Simulation Study 2.The precision of the fit is calculated by taking the
ratio of the squared‘s (variance of the selected score function to that of the Wilcoxon score
function). The value of precision smaller than ‘1‘ indicates that the selected score is more
precise than Wilcoxon fit in terms of SE. The value of precision for different error distri-
butions for all level-1 sample sizes within each level-2 unit is calculated and provided in
Table 2. First, both level-1 and level-2 error terms are distributed by logistic distribution
with parameters (location=3, scale=6) to form symmetric moderate tailed data. The adaptor
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FIGURE 6. Data is generated by bentscores3 distribution with parame-
ters (2, 1)

function selects score#5 as appropriate from the class of optimal scores because it is suit-
able for symmetric moderate tailed distribution. For sample size greater than 300 precision
is 1, which indicates the selected score and Wilcoxon score produces the same analyses.
Secondly, level-1 and level-2 error terms are generated by a standard normal distribution.
Precision is less than 1 when the sample size is less than 900, implies that the selected
score provides efficient analyses. In a sample size larger than 900, both fits provide simi-
lar efficiency. Random errors for level-1 and level-2 errors are generated with exponential
distribution (λ = 1.5) to produce highly right-skewed data. Score #6 is selected by the
adaptive scheme. For all group sizes, precision is less than 1 which shows rank-based fit
from the selected score is more efficient than Wilcoxon fit. Afterward, random errors are
distributed by Uniform distribution (0, 1) for light-tailed symmetric distribution. Score#
5 is selected, then the value of precision 0.90 appeared in the smallest sample size and
highest 0.99 in the largest sample size. This shows score#5 is more suitable than Wilcoxon
fit in small sample size. To produce a highly left-skewed form, errors are generated by a
contaminated normal distribution with negative skewness. The adaptive scheme selected
score# 3. The smallest value of precision is 0.88 in the smallest sample size. For the largest
sample size greater than 900 precision becomes almost ‘1‘. Next, Random errors for level-1
and level-2 are generated by slash (0, 1) distribution to form symmetric moderately heavy-
tailed form. Adaptive scheme selected score function# 6 which is suitable for symmetric
heavy-tailed distribution. In all combinations of level-1 and level-2 sample sizes, precision
is greater than 0.80 and less than 0.96, i.e., the selected score makes the fit more precise
than the Wilcoxon fit in all group sizes.
Furthermore, the appropriate selection of score functions through the adaptor function is



Selecting and Estimating Rank Score Functions Based on Residuals for Linear Mixed Models 59

also described when performing the rank-based analysis in the presence of outliers, through
the following data example.

Level-2\Level-1 5 10 30 50
Error terms are generated by logistic distribution (moderate tailed)

5 0.903 0.970 0.998 1.000
10 0.903 0.970 0.998 1.000
30 0.988 1.000 1.001 1.000
50 1.000 1.001 1.001 1.000

Error terms are generated by a normal distribution (symmetric light-moderate tailed)
5 0.911 0.973 0.998 0.999
10 0.975 0.993 0.999 0.999
30 0.999 0.999 1.000 1.000
50 0.999 1.000 1.000 1.000

Error terms are generated by exponential distribution (highly right-skewed)
5 0.802 0.833 0.857 0.863
10 0.865 0.896 0.922 0.926
30 0.911 0.919 0.928 0.929
50 0.915 0.919 0.927 0.927

Error terms are generated by uniform distribution (symmetric light-tailed)
5 0.900 0.919 0.910 0.908
10 0.958 0.972 0.987 0.992
30 0.985 0.994 0.999 0.999
50 0.992 0.998 0.999 0.999

Error terms are generated by a skewed contaminated normal distribution (highly left-skewed)
5 0.886 0.950 0.988 0.994
10 0.959 0.981 0.996 0.997
30 0.993 0.999 1.000 1.000
50 0.999 0.999 1.000 1.000

Error terms are generated by slash distribution (symmetric moderately heavy-tailed)
5 0.837 0.917 0.944 0.948
10 0.854 0.885 0.910 0.906
30 0.922 0.922 0.958 0.910
50 0.929 0.919 0.909 0.904

TABLE 2. Precision calculated through an adaptive scheme for all sam-
ple sizes for several shapes of error distributions
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4. DATA APPLICATION

An example of a randomized complete block design taken from [25] presents data col-
lected on the production of vascular grafts (artificial veins). The presence of any defect
called ‘flick‘ causes the rejection of graft, and these flicks might be produced by extru-
sion pressure. The experiment is designed to examine the influence of four different levels
(treatment) of extrusion pressure on flicks in six groups of resin (blocks). The percentage
of grafts in the production run without any flicks is measured as the response variable. Six
complete blocks were run with four treatment levels so there aren = 24 observations.
Block has a random effect and treatments are considered as fixed. A two-level random
intercept multilevel model is considered, blocks work as level-2 units. The comparison of
the rank-based estimates of fixed effects and their SEs with traditional REML analysis of
the model is concerned. An initial robust analysis is shown by Wilcoxon (default) score,
afterward, analysis with other score functions is undertaken as well. Table-3 shows esti-
mates of fixed effects, their SE, t-value for REML and p-value for rank-based analysis. The
first row in Table-3 contains the results for the intercept parameter. There are significant
differences in both REML and Wilcoxon analysis. Four different levels (8500, 8700, 8900
and 9100) of treatment extrusion pressure were tested. For Wilcoxon analysis, treatment
levels ‘8500‘ and ‘8700‘ are significant and only the last level ‘8900‘ appeared insignif-
icant. Though in REML treatment ‘8500‘ is not significant and the rest of the levels are
significant at a 5% level of significance. The SE for each main effect is magically reduced.
The value of the scale parameter isn = 4.666. Variance component estimates through
REML areτ00 = 7.3752, σ2 = 7.308, ρ = 0.5022. There are two types of robust estima-
tors of variance components based on residuals of rank-based fit called MAD-median (mm)
[12]. Mean Absolute Deviation (MAD) is used as a scale estimator which is the median
absolute deviation from the median. Another estimator Hodges-Lehmann (thl) is chosen
for comparison; it substitutes median with Hodges-Lehmann estimator and MAD with an
estimator of the scale parameter . The detail of the estimator selected is described by [1].
The rank-based analysis includes the calculation of these two robust estimates of variance
components. For MAD-median (mm)τ00 = 0.319, σ2 = 0.0274, ρ = 0.9209, and for
Hodges-Lehmann (thl)τ00 = 0.322, σ2 = 0.1532, ρ = 0.6775. The MAD-median (mm)
estimator shows a stronger correlation.

REML(with outlier) Rank Based Method (with outlier)
Method Estimates SE t-value Estimates SE P-value

Constant 85.767 73.782 1.162 70.520 6.961 4.263e-09
Trt 8500 153.567 103.696 1.481 7.025 2.155 0.004
Trt 8700 5.917 103.696 0.057 5.6156 2.155 0.017
Trt 8900 3.150 103.696 0.030 2.960 2.155 0.185

TABLE 3. Summary of regression coefficients for the rank-based and
REML analyses for example of vascular grafts including outlier

An outlier is responsible for much of these significant differences. In the response vari-
able, the 21st observation is 97 and mistakenly typed as 977 that appeared as an outlier.
On replacing the outlier with its actual observation, the rank-based and REML analysis
become quite similar. The last level ‘9100‘ works as a reference category. Table-4 contains
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fixed effect estimates after correcting outlier value by REML and rank-based estimation
method.

REML(without outlier) Rank Based Method (without outlier)
Method Estimates SE t-value Estimates SE P-value

Constant 85.767 1.564 54.826 86.115 5.794 0.000
Trt 8500 6.900 1.564 4.421 6.686 1.712 0.004
Trt 8700 5.917 1.564 3.791 5.549 1.712 0.099
Trt 8900 3.150 1.564 2.018 2.970 1.745 0.116

TABLE 4. Summary of regression coefficients for the rank-based and
REML analyses for example of vascular grafts data after replacing the
outlier with its correct value

For rank-based (Wilcoxon) analysis, all the effects are highly significant at a 5% level of
significance except ‘trt8900‘. Whereas all treatment levels are significant in REML. SE has
also been reduced in a rank-based analysis. After the outlier removal, the REML method
shows lower SE, but even for the case of the normal distribution, the rank-based method
has more power than REML. The Wilcoxon analysis is radically efficient in the presence
of outliers. But rank-based analysis appeared still more efficient. The scale parameter
is = 5.532. Variance component estimates through REML areτ00 = 404.3527, σ2 =
32258.33, ρ = 0.0224. The ‘mm‘ estimates areτ00 = 0.0482, σ2 = 0.0074, ρ = 0.8672,
and ‘thl‘ estimates areτ00 = 0.0509, σ2 = 21.0913, ρ = 0.0024. The MAD-median (mm)
estimator performs like robust and shows the strongest correlation, while Hodges-Lehmann
(thl) remains efficient.

est.w Se.w Est.sc Se.sc

Constant 71.3532 8.5869 68.7459 6.3610
Trt 8500 6.5680 2.7480 7.5000 1.9849
Trt 8700 5.3854 2.7480 5.6510 1.9849
Trt 8900 2.8623 2.7480 3.8021 1.9849

TABLE 5. Comparison of estimate and SE of default Wilcoxon score and
scores selected by adaptor function

Figure-7 contains a scatter plot of studentized residuals obtained from the rank-based
fit with the Wilcoxon score function and normal Q-Q plot of the response variable. Af-
ter removing the outlier, a clear picture of the remaining data is obtained. The response
variable seems quite good with normality. Wilcoxon studentized residuals are scattered
randomly. The precision of rank-based analysis can be improved by using any other ap-
propriate score function. A suitable score function can be obtained according to residuals
obtained through the adaptor function. Residuals have light-tailed distribution shape with
skewness̄-0.12 and kurtosis̄1.95. Adaptor function selects bentscores#4, which gives the
impression of proper choice here. Thus the analysis with bentscores#4 is described and
compared with Wilcoxon (default) fit in Table-5. Rank-based fit with score selected from
the adaptor function produces lower SE than Wilcoxon fit. Hence bentscores#4 appears as
the right choice and leads to more efficient results.
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5. SUMMARY AND CONCLUSION

The rank-based method is a robust estimation method in the presence of outliers and
performs as a substitute to OLS and REML developed for linear models. This estimation
method is based on a pseudo norm established on score functions. The rank-based fit could
be sufficiently improved by selecting the accurate score function according to the underly-
ing distribution of the error term. For the case when the distribution of the error term is not
known, this paper investigates the performance of two selection criteria developed for linear
models for a class of error distribution, i.e., symmetric, asymmetric, light-tailed to heavy-
tailed distributions. We evaluated two selection schemes for random intercept multilevel
models with cluster-correlated error terms. The selection of appropriate score functions is
made from a class of suitable score functions. A newly developed R package Rfit for rank-
based estimation includes a library of several built-in score functions. Estimates of fixed
effects and their SE from each rank-based fit for 16 combinations of level-1 and level-2
sample sizes are observed through a simulation study. The efficiency of each score func-
tion is compared with other score functions by following the recommended shapes of error
distributions. All the score functions performed well when group size is 30 or more and the
individual sample size is 5, 10, 30 and 50. Bentscores1 and Bentscores3 show minimum
SE among all other score functions even for the smallest sample size and its magnitude re-
duces as sample size increases. Some score functions like wscores, nscores, Bentscores1,
and Bentscores4 are minimum only when the level-2 sample size is 10 or more. This im-
plies that when the sample size is quite insufficient like group size less than 10 or say
5, the shape of error distribution would be misleading and appropriate selection of score
function would be affected. Another criterion for choosing an appropriate score function
is Hogg type adaptive scheme. This adaptive scheme is applied by using a recently devel-
oped R function named adaptor. A simulation study is conducted to verify the performance
of the adaptor function for several shapes of distributions on the multilevel model. The
rank-based fit through the selected score and Wilcoxon fit are shown and compared. For
this comparison, precision is calculated by taking the ratio of estimated variances of rank-
based fit from the selected score with Wilcoxon fit. For the case of highly right-skewed,
moderately heavy-tailed and light-tailed distributions, selected fit by adaptor function is
more precise than Wilcoxon fit in each sample size. For contaminated normal distribution
selected fit is more precise even in small sample sizes say less than 30. For the rest of the
situations, Wilcoxon and the selected fit produces the same efficiency. In sample size more
than 900, almost for every score function, precision tends to reach 1. The results indicate
the significance of sample size at each level, particularly at level-2. Generally speaking,
when the total sample size is around 1000, rank-based fit through selected score function
and by Wilcoxon fit produces quite similar SE of fixed effect estimates. One should be
cautious when selecting a score function for small level-1 and level-2 sample sizes using
either selection criteria. The application of both the selection schemes is illustrated through
an example of block design with cluster-correlated errors. All the score functions provided
through both selection procedures give good results in terms of lower SE and unbiased
estimates for multilevel models compared with REML.
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