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Abstract. We prove that the homogeneous and non-homogeneous
linear Volterra summation equations are Hyers–Ulam stable onZ+.
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1. INTRODUCTION

Ulam in [23] posed a problem related with the stability of functional equations for
homomorphism in 1940:when an approximate homomorphism from groupG1 to a
metric groupG2 can be approximated by an exact homomorphism?Nearly, for the
case whereG1 andG2 are assumed to be Banach spaces, Hyers [9] brilliantly answered
to the question by a direct approach. Aoki [2] and Rassias [19] latter improved the
partial answer of Hyers. In fact, the most exciting result was of Rassias [19], who
putted more general conditions on the bounds. Recently, Zada et al. studied Hyers–
Ulam stability of different functional equations with different approaches [13, 14, 24,
25]. For more details about this area we recommend the book of Jung [10].
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To find solutions of equations with continuous time like differential, integral and
integro differential equations is a challenging task but Volterra equations provide us
a powerful tool to handle such type of problems; e.g., the asymptotic behavior of
Volterra equations are studied very well in [17, 21]. Furthermore, for Volterra sum-
mation equations the theory of stability via boundedness are studied with the approach
of the direct Lyapunov methods [4, 6, 7]. About the solutions (existence and approx-
imation) of Lyapunov summation equations we recommend [1]. While for Volterra
summation equations with degenerate Kernels the stability criteria are derived in [5].
The stability problems and conditions in terms of the characteristic equations of some
Volterra summation equations are investigated in [11]. On the other hand for the ex-
istence of unique solutions of Volterra summation equations weighted norms were
utilized in [12, 15]. The problem of asymptotic equivalence in Volterra summation
equations has been investigated in [18]. On the other hand the periodic solutions of
linear and nonlinear Volterra summation equations of convolution or non-convolution
types are studied in [3]. A detailed study on the oscillatory behavior, asymptotic
behavior and properties of Volterra equations can be found in [8, 16, 17, 21, 22].

In this note, we study Hyers–Ulam stability of the homogeneous linear Volterra
summation equation

wm = η

m∑
s=0

K(m, s)w(s) (1. 1)

and non-homogeneous linear Volterra summation equation

wm = fm + η

m∑
s=0

K(m, s)w(s), (1. 2)

where the nucleusK(m, s) of the summation equation andfm are convergent se-
quences on the setZ+, the parameterη is a fixed real constant. SinceK(m, s) is
convergent on0 ≤ s ≤ m, there exists a positive constantd such that‖K(m, s)‖ ≤ d.

2. NOTATION AND PRELIMINARIES

Here we list some definitions, notation and some tools which would be helpful in
deriving our main results. LetX be a Banach space andB(X ,Z+) denote the space
of all bounded linear operators with norm‖ · ‖∞ defined by

‖f‖∞ = max
m∈Z+

‖fm‖, f ∈ B(X ,Z+). (2. 3)

Definition 2.1. The summation equation (1.2) is said to have Hyers–Ulam stability
onZ+ if and only if for every sequencey ∈ B(X ,Z+) satisfying

∥∥∥∥∥ym − fm − η

m∑
s=0

K(m, s)y(s)

∥∥∥∥∥ ≤ ε,

for all m ∈ Z+ and for someε ≥ 0, there exists a solutionw ∈ B(X ,Z+) of (1.2)
such that

‖y − w‖∞ < Mε,

whereM is a non-negative constant.
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Definition 2.2. LetkerW denote the kernel of the bounded linear operatorW : Λ →
Π. We define the induced one to one operatorŴ is a subspaces ofW fromΛ/ker(W)
into Π byŴ(w + kerW) = W(w) for all w ∈ Λ.

Definition 2.3. LetW : Λ → Π be an operator from spaceΛ to another spaceΠ.
We say thatW has Hyers–Ulam stability if and only if, for anyg ∈ W(Λ) andf ∈ Λ
such that‖Wf − g‖∞ ≤ ε for someε ≥ 0, there exists anf0 ∈ Λ withWf0 = g and
‖f − f0‖∞ ≤ Mε whereM is non- negative constant. The smallest suchM is called
the Hyers–Ulam constant.

We will use the following theorem [20] for summation equation in deriving our
main results.

Theorem 2.4. LetW be a bounded linear operator fromΛ into Π, i.e.,W : Λ → Π,
whereΛ andΠ are complex Banach spaces. ForW we state the following equivalent
statements:
(1)W has the Hyers–Ulam stability.
(2)W(Λ) is closed.
(3) Ŵ−1 is a linear operator such that‖Ŵ−1‖∞ < ∞.
Moreover if one of these conditions is true, then‖W−1‖∞ = M is the Hyers–Ulam
stability constant ofW.

Proof. The equivalence of (2) and (3) is well–known. We have to show the equiva-
lence of (1) and (3) by the fact thatW has the Hyers–Ulam stability and by definition
of Hyers–Ulam stability.

Another way of stating this definition is:

for any y ∈ Λ we can find ay0 ∈ ker(W) such that ‖y−y0‖∞ ≤ M‖Wy‖∞. (H)

If this condition holds, then

‖y + ker(W)‖∞ ≤ M‖Wy‖∞,

for all y ∈ Λ, and henceŴ−1 is bounded and‖Ŵ−1‖∞ ≤ M which shows that
(1) ⇒ (3).
Now we have to find(3) ⇒ (1). Assume thatŴ−1 is bounded and‖Ŵ−1‖∞ ≤ L,
for anyy ∈ Λ we have

‖y + ker(W)‖∞ = ‖Ŵ−1(Wy)‖∞ ≤ ‖Ŵ−1‖∞‖Wy‖∞ < L‖Wy‖∞,

so we can find ay0 ∈ ker(W) such that (H) holds, and thusW has the Hyers–Ulam
stability, hence(3) ⇒ (1). ¤

3. MAIN RESULTS

Now we state our first result, for some bounded positive sequences.

Theorem 3.1. If the kernelK(m, s) is convergent on0 ≤ s ≤ m, then (1.1) is
Hyers–Ulam stable onZ+ for all η.
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Proof. Define the operatorW : B(X ,Z+) → B(X ,Z+) by

(Wg)m = gm − η

m∑
s=0

K(m, s)g(s), m ∈ Z+.

Clearly,W is well defined on spaceB(X ,Z+). Next we have to show thatW is
bounded. For this consider

‖W‖∞ = sup
‖g‖=1

‖Wg‖∞

= sup
‖g‖=1

sup
m∈Z+

∥∥∥∥gm − η

m∑
s=0

K(m, s)g(s)
∥∥∥∥

≤ sup
‖g‖=1

sup
m∈Z+

(
‖gm‖+ |η|

m∑
s=0

‖K(m, s)‖‖g(s)‖
)

≤ sup
‖g‖=1

(
sup

m∈Z+

‖gm‖+ |η| sup
m∈Z+

m∑
s=0

‖K(m, s)‖‖g(s)‖
)

≤ sup
‖g‖=1

(
1 + |η|

m∑
s=0

sup
m∈Z+

‖K(m, s)‖
)
‖g‖∞ (using (2.3))

≤ sup
‖g‖=1

(
1 + |η|d

m∑
s=0

)
‖g‖∞

≤ sup
‖g‖=1

(
1 + |η|dm

)‖g‖∞

≤ (1 + |η|dm) < ∞,

thus, we can write

‖W‖∞ < ∞,

this shows thatW is bounded. Next we have to show thatW(B(X ,Z+)) is closed.
As for every sequencey ∈ B(X ,Z+), there is a sequencef ∈ B(X ,Z+) such that
Wf = y. Moreover,B(X ,Z+) is a complex Banach space from which it follows that
W is closed. From Theorem 2.4, we can say thatW has Hyers–Ulam stability, i.e., if
for each sequenceg ∈ W(B(X ,Z+)) andy ∈ B(X ,Z+) we have

‖Wy − g‖∞ ≤ ε,

for someε ≥ 0, then there exists aw ∈ B(X ,Z+) such thatWw = g and

‖y − w‖∞ ≤ Mε,

where we can callM by Hyers–Ulam constant ofWw = g. Since0 ∈ W(B(X ,Z+)),
therefore, replacingg by 0, the above statement is then read as: if for anyy ∈
B(X ,Z+) ∥∥∥∥∥ym − η

m∑
s=0

K(m, s)y(s)

∥∥∥∥∥ ≤ ε,
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for all m ∈ Z+ and for someε ≥ 0, then there exists aw ∈ B(X ,Z+) such that

wm = η

m∑
s=0

K(m, s)w(s),

and‖y − w‖∞ ≤ Mε where we can callM as a Hyers–Ulam constant of (1.1).¤

By repeating the above process in the same way, one can prove that:

Theorem 3.2. If the kernelK(m, s) is convergent on0 ≤ s ≤ m andf ∈ B(X ,Z+),
then (1.2) is Hyers–Ulam stable onZ+ for all η.

Proof. Sincef ∈ B(X ,Z+), from the stability ofW it follows that if for anyy ∈
B(X ,Z+)

‖Wy − f‖∞ ≤ ε,

for someε ≥ 0, then there exists aw ∈ B(X ,Z+) such thatWw = f and

‖y − w‖∞ ≤ Mε,

which implies that if fory ∈ B(X ,Z+) we have∥∥∥∥∥ym − fm − η

m∑
s=0

K(m, s)y(s)

∥∥∥∥∥ ≤ ε,

for all m ∈ Z+ and for someε ≥ 0, then there exists aw ∈ B(X ,Z+) such that

wm = fm + η

m∑
s=0

K(m, s)w(s)

and
‖y − w‖∞ ≤ Mε

where we can callM by Hyers–Ulam constant of (1.2). ¤
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