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Abstract.: A magma S that meets the identity,xy ·z = zy ·x, ∀x, y, z ∈ S
is called an AG-groupoid. An AG-groupoid S gratifying the paramedial
law: uv · wx = xv · wu, ∀u, v, w, x ∈ S is called a paramedial AG-
groupoid. Every AG-grouoid with a left identity is paramedial. We extend
the concept of inverse AG-groupoid [4, 7] to paramedial AG-groupoid and
investigate various of its properties. We prove that inverses of elements in
an inverse paramedial AG-groupoid are unique. Further, we initiate and
investigate the notions of congruences, partial order and compatible partial
orders for inverse paramedial AG-groupoid and strengthen this idea fur-
ther to a completely inverse paramedial AG-groupoid. Furthermore, we
introduce and characterize some congruences on completely inverse para-
medial AG-groupoids and introduce and characterize the concept of sep-
arative and completely separative ordered, normal sub-groupoid, pseudo
normal congruence pair, and normal congruence pair for the class of com-
pletely inverse paramedial AG-groupoids. We also provide a variety of
examples and counterexamples for justification of the produced results.
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1. INTRODUCTION

The theory of AG-groupoid is introduced in1972 by Kazim and Naseer [6]. AG-
groupoids generalize the class of commutative semigroups and satisfies the medial law,
ab · cd = ac · bd. Throughout this article,S will represent an AG-groupoid otherwise stated
else. This structure is closely related to a commutative semigroup because a commutative
AG-groupoid is always associative [7]. An AG-groupoid may or may not contains a left
identity element, and if an AG-groupoid contains a left identity, then this left identity is
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unique. It is important to mention here that if an AG-groupoid contains identity or even a
right identity element, then it becomes a commutative monoid. Further, the left identity of
an AG-groupoid permits inverses of elements in the structure. An AG-groupoid with the
left identity is called AG-monoid, and satisfies the paramedial property,ab · cd = db · ca.
Every paramedial AG-groupoid also satisfies the bi-commutative property,

ab · cd = dc · ba ∀, a, b, c, d.

AG-groupoidS with the propertyab · c = b · ac is called AG* and is called AG** if it
satisfies the identitya · bc = b · ac. We shall use the juxtaposition to avoid excessive
parenthesization and dots i.e.uv will meanu · v, uv ·wt for (u · v)(w · t), and(uv ·w)t for
((u · v)w)t. AG-groupoid is a non-associative structure in general that possess a variety of
applications in the field of flock theory, geometry and finite mathematics [10, 11, 12, 13].
Fuzzification of the field has made it more interesting and applicable [1, 5, 14, 15].

Various other aspects of the said structure are also investigated by different researchers
in a variety of papers [16, 17, 18, 19, 20] and the references therein. Inverse and completely
inverse AG-groupoids are defined by Mushtaq and Iqbal [7], Peter V. Protic [3] and Wies-
law A. Dudek and Roman S. Gigon [4]. Some congruences on an inverse and completely
inverse AG**-groupoids are defined [2, 3, 4, 8, 21]. In this section we define some congru-
ences on completely inverse paramedial AG-groupoid. To proceed further, we start with
the following definition.

Definition 1.1. [4, 7] An AG-groupoidS is called inverse AG-groupoid, if for everyu ∈ S,
there existsu′ ∈ S such thatu = uu′ · u andu′u · u′ = u′. By u′ we mean the inverse of
u. An AG-groupoidS is called completely inverse AG-groupoid if it satisfies the identity
uu′ = u′u for all u ∈ S.
It is proved by Q. Mushtaq and M. Iqbal[7] that if u′ is an inverse ofu andv′is an inverse
of v in an AG-groupoid, then

(uv)′ = u′v′. (1. 1)

Example 1.2. Consider AG-groupoidS = {1, 2, 3, 4} defined in Table 1. Then, the rela-
tion≤ define asa ≤ b ⇐⇒ a = aa−1 · b is compatible on AG-groupoidS.

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 4 3 2 1
4 3 4 1 2

Table 1

Definition 1.3. An AG-groupoid(S, ·) is called an ordered AG-groupoid, ifS posses an
order. In this case, we can write(S, ·,≤).

Definition 1.4. An ordered AG-groupoid(S, ·,≤) is called separative if

(1) ∀u, v ∈ S, u2 ≤ uv, vu ≤ v2 ⇒ u ≤ v.
(2) ∀u, v ∈ S, u2 ≤ vu, uv ≤ v2 ⇒ u ≤ v.

In Example (1.2) the relation,≤ is separative.
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Definition 1.5. A separative ordered AG-groupoidS is called completely separative if

u, v, x, y ∈ S, x ≤ y, (xy)u ≤ (xy)v ⇒ x2u ≤ x2v, y2u ≤ y2v.

2. CONGRUENCES

In this section we define some relations on paramedial and inverse paramedial AG-
groupoidS. We prove that the following relations are congruences on paramedial and
inverse paramedial AG-groupoidS.

(1) η = {(u, v) ∈ S × S : (∃l ∈ E(S)), lu = lv} ;
(2) µ = {(u, v) ∈ S × S : xu = xv, ∀x ∈ S} ;
(3) ρ =

{
(u, v) ∈ S × S : u−1u = v−1v

}
.

HereE(S) denotes the set of idempotent elements ofS.

Remark 2.1. LetS be a paramedial AG-groupoid, andg1, g2 ∈ E(S). Then by paramedial
and medial law,

g1g2 = g1g1 · g2g2 = g2g1 · g2g1 = g2g2 · g1g1 = g2g1.

It follows thatE(S) is a semilattice.

The inverses in an inverse paramedial AG-grupoid are unique as proved in the following.

Remark 2.2. LetS be an inverse paramedial AG-groupoid, anda, b ∈ V (u). Then

ua = (ub · u)a = au · ub (by the left invertive law)

= bu · ua (by the paramedial property)

= (ua · u)b = ub (by the left invertive law)

⇒ ua = ub. (2. 2)

Thus

a = au · a = (au(au · a)) (by medial law)

= (a · au)(ua) (by medial law)

= (a · au)(ub) (by2.2)

= (b · au)(ua) (by paramedial property)

= (b · au)(ub) (by2.2)

= (bu)(au · b) (by medial law)

= (bu)(bu · a) (by left invertive law)

= (b · bu)(ua) (by medial law)

= (b · bu)(ub) (by2.2)

= (bu)(bu · b) (by medial law)

= bu · b = b.

⇒ a = b.

It follows that| V (u) |= 1, and the inverse ofu ∈ S is unique. We shall denote it byu−1.

Theorem 2.3. Let S be a paramedial AG-groupoid andE(S) 6= ∅. Then the relationη
defined onS in Section2 Part (1) is a congruence relation onS.
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Proof. Clearly, the relationη is a reflexive and symmetric onE(S) 6= ∅. In order to prove
transitivity of η let uηv, vηw. Thenlu = lv,mv = mw for somel, m ∈ E(S). Now by
the left invertive, paramedial, medial laws and the assumption, we have

(lm)u = (ll ·m)u = um · ll = lm · lu = lm · lv =
= ll ·mv = ll ·mw = wl ·ml = wm · ll = wm · l = lm · w.

Thuslm · u = lm · w. Sincelm ∈ E(S), souηw equivalentlyη is transitive. Thusη is an
equivalence relation. Now letuηv,w ∈ S. Thenlu = lv for somel ∈ E(S), and

l(uw) = ll · uw = lu · lw = lv · lw = ll · vw = l(vw) ⇒ uwηvw.

Similarly, wuηwv. Thusη is compatible and hence is a congruence onS. Hence the result
proved. ¤

Theorem 2.4. LetS be a paramedial AG-groupoid. Then the relationµ defined onS with

µ = {(u, v) ∈ S × S : xu = xv, ∀x ∈ S}
is a congruence relation onS.
The following result holds for a more general class of inverse paramedial AG-groupoid.

Theorem 2.5. LetS be an inverse AG-groupoid. Then the relationρ defined onS with

ρ =
{
(u, v) ∈ S × S : u−1u = v−1v

}
(2. 3)

is a congruence relation onS.

Proof. Clearly, ρ is an equivalence relation. Now for left compatibility, letu, v, w ∈ S
such thatuρv. Then we have

(wu)−1(wu) = (w−1u−1)(wu)
= (w−1w)(u−1u)
= (w−1w)(v−1v)
= (w−1v−1)(wv)
= (wv)−1(wv)

⇒ (wu)−1(wu) = (wv)−1(wv) ⇒ uρv ⇒ wuρwv.

Similarly, uwρvw. Henceρ is compatible. Thusρ is a congruence relation. ¤

Example 2.6. Consider Example(1.2), then the relationρ defined in Equation(2.3) is
given as under,

ρ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4)(4, 1), (4, 2), (4, 3), (4, 4)}

is a congruence relation.

Similarly, for Table2 of an AG-groupoid(S, ·) theρ defined in Equation(2.3) as under
is a congruence relation onS.

ρ = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}



A Study of Completely Inverse Paramedial AG-Groupoids 23

· 1 2 3 4 5
1 1 3 2 5 4
2 4 5 3 1 2
3 5 2 4 3 1
4 3 4 1 2 5
5 2 1 5 4 3

Table 2

3. NATURAL PARTIAL ORDER

Here we discuss natural partial relation on an inverse paramedial AG-groupoidS and
investigate some of its properties. We start with the following theorem.

Theorem 3.1. LetS be an inverse paramedial AG-groupoid. Then the relation≤,

u ≤ v ⇔ u = uu−1 · v (3. 4)

is a partial order relation and is compatible onS.

Proof. The relation≤ is clearly reflexive asS is inverse paramedial AG-groupoid.
≤ is anti-symmetric: Assume thatu ≤ v andv ≤ u, thenu = uu−1 ·v andv = vv−1 ·u.

Thus by assumption, left invertive, paramedial and medial laws,

u = uu−1 · v = ((uu−1 · v)u−1)(vv−1 · u)
= (u−1v · uu−1)(vv−1 · u)
= (u−1v · vv−1)(uu−1 · u)
= (v−1v · vu−1)(uu−1 · u)
= (v−1v · uu−1)(vu−1 · u)
= (v−1v · uu−1)(uu−1 · v)
= (v−1v · uu−1)(u)
= (u · uu−1)(v−1v)
= (uv−1)(uu−1 · v)
= (vv−1)(uu−1 · u)
= vv−1 · u
= v.

Thusu = v. Hence≤ is anti-symmetric.
≤ is transitive: To this end, assume thatu ≤ v andv ≤ w this gives that

u = uu−1 · v (3. 5)

and v = vv−1 · w (3. 6)
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Now, using Equations(3.5) and(3.6), left invertive law, medial law, paramedial law and
reflexive property, we have

u = uu−1 · v = (uu−1)(vv−1 · w)
= ((uu−1 · v)u−1)(vv−1 · w)
= (u−1v · uu−1)(vv−1 · w)
= (u−1v · vv−1)(uu−1 · w)
= ((vv−1 · v)u−1)(uu−1 · w)
= (vu−1)(uu−1 · w)
= (wu−1)(uu−1 · v)
= wu−1 · u
= uu−1 · w

⇒ u ≤ w.

Equivalently,≤ is transitive, and thus the relation≤ is a partial order onS.
Next, for left compatibility, assume thatu ≤ v andw ∈ S. Then

wu = w(uu−1 · v) = (ww−1 · w)(uu−1 · v)
= (ww−1 · uu−1)(wv)
= (wu · w−1u−1)wv

= (wu · (wu)−1)wv ⇒ wu ≤ wv.

Hence the relation≤ is left compatible. Further,

uw = (uu−1 · v)w = (uu−1 · v)(ww−1 · w)
= (uu−1 · ww−1)(vw)
= (uw · u−1w−1)vw

= (uw · (uw)−1)vw ⇒ uw ≤ vw.

Thus the relation≤ is right compatible, and whence is compatible. ¤

It is illustrated in the following that the relation≤ defined on an inverse paramedial
AG-grupoid is a compatible partial order.

Example 3.2. See Example (1.2), the partial order≤ as defined with ( 3. 4 ) and given
below, is a compatible partial order on AG-groupoidS.

≤= {(1, 1), (2, 2), (3, 3), (4, 4)}

Corollary 3.3. LetS be an inverse paramedial AG-groupoid andu, v ∈ S. Thenu ≤ v ⇔
uu−1 = vu−1.
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Proof. Let u ≤ v. Then

uu−1 = (uu−1 · v)u−1 (By Theorem 3.1)

=
[
(uu−1)(vv−1 · v)

]
u−1 (By Theorem 3.1)

=
[
(v · vv−1)(u−1u)

]
u−1) (By bi-commutative)

= (u−1 · u−1u)(v · vv−1) (By left invertive law)

= (vv−1 · v)(u−1u · u−1) ((By bi-commutative))

= vu−1 (By Theorem 3.1).

Conversely, letu, v ∈ S. Then

uu−1 = vu−1 ⇒ uu−1 · u = vu−1 · u ⇒ u = uu−1 · v.

Thusu ≤ v. Hence the result is proved. ¤

In inverse AG-groupoiduu−1 andu−1u are not necessarily idempotent as shown in
Table 3 and Table 4.

∗ 1 2 3 4 · 1 2 3 4
1 2 2 4 4 1 2 3 1 4
2 2 2 2 2 2 4 1 3 2
3 1 2 3 4 3 3 2 4 1
4 1 2 1 2 4 1 4 2 3

Table 3 Table 4

In the above Table 3,(S, ∗) is an inverse AG-groupoid such that the inverses of1, 2, 3, 4
are4, 2, 3, 1 respectively. Clearly,(1 ∗ 4) ∗ (1 ∗ 4) 6= 1 ∗ 4. Similarly, (S, ·) in Table 4 is an
inverse AG-groupoid such that the inverses of1, 2, 3, 4 are4, 3, 2, 1 respectively. Clearly,
(1 · 2) · (1 · 2) 6= 1 · 2. However, in completely inverse AG-groupoiduu−1 andu−1u are
idempotents, which is proved in Lemma 4.1.

4. NORMAL CONGRUENCE PAIR

Let S denotes a completely inverse paramedial AG-grupoid in which in which we have
uu−1 = u−1u or equivalentlyuu−1, u−1u ∈ E(S) holds for eachu ∈ S. Then the
following lemma holds.

Lemma 4.1. LetS be an inverse paramedial AG-groupoid,u ∈ S. Then

uu−1, u−1u ∈ E(S) ⇔ uu−1 = u−1u.

Proof. Let uu−1 = u−1u. Then

(uu−1)2 = uu−1 · uu−1 = u−1u · uu−1 = (uu−1 · u)u−1 = uu−1.
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Conversely, letuu−1, u−1u ∈ E(S). Then

uu−1 = uu−1 · uu−1

= (uu−1 · uu−1)uu−1

= ((uu−1 · u−1)u)uu−1

= (uu−1 · u)(uu−1 · u−1)
= (u−1u)(uu−1 · uu−1)
= (u−1u)((uu−1 · u−1)u)
= (u−1u)((uu−1 · u−1)(uu−1 · u))
= (u−1u)((uu−1 · uu−1)(u−1u))
= (u−1u)(uu−1 · u−1u)
= (u−1u)((u−1u · u−1)u)
= (u−1u)(u−1u)
= u−1u.

Hence the lemma is proved. ¤

The following is a consequence of Theorem (3.1)

Corollary 4.2. LetS be a completely inverse paramedial AG-groupoid andu, v ∈ S. Then
u ≤ v ⇔ (∃g ∈ E(S))u = gv.

Proof. Let u, v ∈ S. Thenu ≤ v if and only if, u = uu−1 · v. Sinceuu−1 ∈ E(S),
therefore ifg = uu−1 thenu = gv.
Conversely, letu, v ∈ S be such thatg ∈ E(S) andu = gv. Sinceuu−1 = u−1u ∈ E(S)
andE(S) is a semi-lattice, we have

uu−1 · v = (gv · gv−1)v
= (gv · gv−1)(vv−1 · v)
= (gv · vv−1)(gv−1 · v)
= ((vv−1 · v)g)(vv−1 · g)
= (vg)(vv−1 · g)
= (gg)(vv−1 · v)
= gv ⇒ uu−1 · v
= u.

Thus for eachu, v, x, y ∈ S, we havexu ≤ xv ⇒ ux ≤ vx and sou ≤ v. ¤

Lemma 4.3. Let (S, ·,≤) be a separative order inverse paramedial AG-groupoid. Then
for eachu, v, x, y ∈ S we have,

(1) xu ≤ xv ⇔ ux ≤ vx,
(2) x2u ≤ x2v ⇔ xu ≤ xv.

Proof. Let u, v ∈ S. Then
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(1) xu ≤ xv. Sincexu · xu ≤ xv · xu, we have

xu ≤ xv ⇒ xu · xu ≤ xv · xu

⇒ uu · xx ≤ uv · xx

⇒ ux · ux ≤ uv · xx

⇒ (ux)2 ≤ ux · vx. (4. 7)

Also

xu ≤ xv ⇒ xu · xv ≤ xv · xv

⇒ vu · xx ≤ vv · xx

⇒ vx · ux ≤ vx · vx

⇒ vx · ux ≤ (vx)2 (4. 8)

Similarly, xu ≤ xv ⇒ (ux)2 ≤ vx · ux andux · vx ≤ (vx)2. Henceux ≤ vx.
(2) x2u ≤ x2v. Sincex2u · u ≤ x2v · u, we have

x2u ≤ x2v ⇒ x2u · u ≤ x2v · u
⇒ uu · x2 ≤ uv · x2

⇒ ux · ux ≤ ux · vx

⇒ (ux)2 ≤ ux · vx. (4. 9)

Also

x2u ≤ x2v ⇒ x2u · v ≤ x2v · v
⇒ vu · x2 ≤ vv · x2

⇒ vx · ux ≤ vx · vx

⇒ vx · ux ≤ (vx)2 (4. 10)

Similarly, x2u ≤ x2v ⇒ (ux)2 ≤ vx · ux andux · vx ≤ (vx)2. Henceux ≤ vx
and by Part (1)xu ≤ xv.

¤

The following definitions are introduced in [3].

Definition 4.4. LetK be a subset of a completely inverse AG-groupoidS. Then

(1) K is full , if E(S) ⊆ K;
(2) K is self-conjugate, if u−1(Ku) ⊆ K, for everyu ∈ K;
(3) K is inverse closed, if u ∈ K ⇒ u−1 ∈ K;
(4) K is normal, if K is full, self-conjugate and inverse closed;
(5) Letρ be the congruence relation onS as defined in Theorem (2.5). Then restriction

ρ |E(S) is thetrace ofρ to be denoted bytr ρ;
(6) The setkerρ = {u ∈ S | (∃g ∈ E(S))uρg}.

Example 4.5. LetS = {w, x, y, z}. Then(S, ∗) with the Table 5 is an inverse paramedial
AG-groupoid such that each element is its own inverse. Clearly,K = {w, x} is normal in
S.
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* w x y z
w w x y z
x x w z y
y z y w x
z y z x w

Table 5

Lemma 4.6. Letρ be a congruence relation onS. Thenkerρ is a normal subgroupoid of
S.

Proof. Sinceρ is a congruence relation onS, so for anyu, v ∈ kerρ there existsl, m ∈
E(S) such thatuρl, vρm. Now uvρlm, clearly lm ∈ E(S). Souv ∈ kerρ, hencekerρ
is a subgroupoid ofS. Clearly, kerρ is full. Now, let u ∈ S. Thenu−1(kerρ · u) ={
u−1(vu) | v ∈ kerρ

}
. Sincev ∈ kerρ so there existsm ∈ E(S) such thatvρm so,

u−1(vu)ρu−1(mu). Thus

u−1(mu) = (u−1u · u−1)(mu)
= (uu−1)(m · u−1u)
= (um)(u−1 · uu−1)
= ((u−1u) ·m)(u−1u)
= (m · u−1u)(u−1u)
= (u−1u · u−1u)m
= u−1u ·m.

Sinceu−1u ·m ∈ E(S) sou−1(vu) ∈ kerρ. Henceu−1(kerρu) ⊆ kerρ, and thuskerρ
is self-conjugate subgroupoid ofS. Also if u ∈ kerρ thenuρm for somem ∈ E(S) and
u−1ρm−1 = m. Henceu−1 ∈ kerρ, andkerρ is inverse closed. Thuskerρ is normal
subgroupoid ofS. ¤

Definition 4.7. [8] Let K be a normal subgroupoid ofS andτ be a congruence on semi-
latticeE(S) such that,

lu ∈ K, lτu−1u ⇒ u ∈ K, (4. 11)

for everyu ∈ S andl ∈ E(S). Then the pair(K, τ) is a congruence pair forS.
In this case, we define a relationρ(K,τ) onS by

uρ(K, τ)v ⇔ u−1uτv−1v, uv−1, vu−1 ∈ K.

Lemma 4.8. For a congruence pair(K, τ) for S, we have

l(uv) ∈ K, lτu−1u ⇒ uv ∈ K

for anyu, v ∈ S, l ∈ E(S).
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Proof. Let u, v ∈ S, l ∈ E(S), l(uv) ∈ K and lτu−1u. Then using the paramedial,
medial, left invertive laws and definition of inverse AG-groupoid

l · uv = ll · uv

= vl · ul

= ((vv−1 · v)l)(ul)
= (lv · vv−1)(ul)
= (ul · vv−1)(lv)
= (ul · l)(vv−1 · v)
= (ll · u)(vv−1 · v)
= (lu)(vv−1 · v)
= (l · vv−1)(uv)

and

(uv)−1(uv) = (u−1v−1)(uv)
= (u−1u)(v−1v)τ l(v−1v).

By above and ( 4. 11 ), we haveuv ∈ K. ¤

Definition 4.9. [4] Let K be a full subgroupoid ofS andτ a congruence onE(S) and≤
be the relation as defined in Theorem (3.1) and satisfying the following condition:

(1) For all u ∈ S, v ∈ K, v ≤ u anduu−1τvv−1 implyu ∈ K.
We call(K, τ) a pseudo normal congruence pair forS. If, in addition,

(2) For everyu ∈ K, there existsv ∈ S with v ≤ u, uu−1τvv−1 andv−1 ∈ K,
then(K, τ) is called normal congruence pair forS.

For pseudo normal congruence pair(K, τ), we define a relation,ρ(K,τ) as follows:

uρ(K,τ)v ⇔ uv−1, u−1v, vu−1, v−1u ∈ K, uu−1 · vv−1τuu−1τvv−1. (4. 12)

Lemma 4.10. Let (K, τ) be a pseudo normal congruence pair ofS, u, v ∈ S. If uρ(K,τ)v
andv ∈ K, thenu ∈ K.

Proof. Sinceuρ(K, τ)v, so we haveuv−1 ∈ K anduu−1 · vv−1τvv−1. Sincev ∈ K and
K is full subgroupoid, souv−1 · v = vv−1 · u ∈ K. We have to prove thatuv−1 · v ≤ u.
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Here

((uv−1 · v)(uv−1 · v)−1)u = ((uv−1 · v)(u−1v · v−1))u
= ((vv−1 · u)(v−1v · u−1))u
= ((vv−1 · v−1v)(uu−1))u
= (vv−1 · uu−1)u
= (uu−1 · vv−1)u
= (uu−1 · vv−1)(uu−1 · u)
= (uu−1 · uu−1)(vv−1 · u)
= uu−1(vv−1 · u)
= uu−1(uv−1 · v)
= vu−1(uv−1 · u)
= (v · uv−1)(u−1u)
= (u−1u · uv−1)v
= (v−1u · uu−1)v
= ((uu−1 · u)v−1)v
= uv−1 · v.

Hence, by ( 3. 4 ), it follows thatuv−1 · v ≤ u.
Also

(uv−1 · v)(uv−1 · v)−1 = (uv−1 · v)(u−1v · v−1)
= (uv−1 · u−1v)vv−1

= (uu−1 · v−1v)vv−1

= (vv−1 · v−1v) · uu−1

= vv−1 · uu−1τuu−1.

Hence by Definition (4.9(i)) it follows thatu ∈ K. ¤

Theorem 4.11. Let (K, τ) be a pseudo normal congruence pair forS. Thenρ(K,τ) is a
congruence onS with

kerρ(K,τ) =
{
u ∈ K | (∃v ∈ S), v ≤ u, uu−1τ vv−1, v−1 ∈ K

}
(4. 13)

Proof. Let ρ(K,τ), be a pseudo normal congruence pair forS as given in ( 4. 12 ) and
ρ = ρ(K,τ). First we show thatρ is compatible, for this assumeuρv andw ∈ S. Then

uw · (vw)−1 = uw · v−1w−1 = uv−1 · ww−1 ⊆ K · E(S) ⊆ K,

By Definition (4.9), forpseudonormalcongruencepair andK is full. So,uw · (vw)−1 ∈
K. Similarly, (vw)−1 · uw, (uw)−1 · vw, vw · (uw)−1 ∈ K.
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Next,

(uw · (uw)−1)((vw)−1 · vw) = (uw · (vw)−1)((uw)−1 · vw)
= (uw · v−1w−1)(u−1w−1 · vw)
= (uv−1 · ww−1)(u−1v · w−1w)
= (uv−1 · u−1v)(ww−1 · w−1w)
= (uv−1 · u−1v)(ww−1 · ww−1)
= (uu−1 · v−1v)(ww−1 · ww−1)
= (uu−1 · v−1v)ww−1τuu−1 · ww−1

(uw · (uw)−1)((vw)−1 · vw) τ (uw · (uw)−1).

By symmetry, it follows that

(uw · (uw)−1)((vw)−1 · vw) τ (vw · (vw)−1).

Henceuwρvw. Thusρ is right compatible, similarly,ρ is left compatible, thusρ is com-
patible.
Now, we have to show thatρ is an equivalence. SinceK is full, soρ is reflexive. Obviously,
ρ is symmetric. For transitivity, letuρv, vρw. Then by right compatibilityuw−1ρvw−1

and vw−1ρww−1, sinceww−1 ∈ E(S) ⊆ K, andvw−1ρww−1, so vw−1 ∈ K (by
Lemma (4.10)). Againuw−1ρvw−1 so again by Lemma (4.10),uw−1 ∈ K. Similarly,
uu−1ρvu−1, vu−1ρwu−1 ⇒ wu−1 ∈ K (by Lemma (4.10)).
Similarly, by left compatibilityuρv, vρw impliesu−1uρu−1v andu−1vρu−1w, andw−1vρw−1w
so again by Lemma (4.10), we haveu−1w, w−1u ∈ K.
Also uρv, vρw yields

u−1u · vv−1τuu−1τvv−1, v−1v · ww−1τvv−1τww−1.

and by transitivity it follows thatuu−1τww−1. Moreover,

(vv−1 · ww−1)(uu−1 · ww−1) = (vv−1 · uu−1)(ww−1 · ww−1)
= (vv−1 · uu−1)ww−1τuu−1 · ww−1,

also

(vv−1 · ww−1)(uu−1 · ww−1) = (vv−1 · uu−1)(ww−1 · ww−1)
= (vv−1 · uu−1)ww−1τvv−1 · ww−1τww−1.

Whence,uu−1 · ww−1τww−1.
Now, uw−1, u−1w, wu−1, w−1u ∈ K,uu−1 · ww−1τuu−1τww−1 is equivalent to

uρw. Henceρ is transitive relation and so is a congruence. ¤

5. CONCLUSIONS

In this article, the concept of inverse AG-groupoid [4, 7] is extended to paramedial
AG-groupoidS that satisfies the paramedial law:uv · wx = xv · wu, and various of
its properties are investigated. It is proved that inverses in an inverse paramedial AG-
groupoid are unique. Congruences, partial order, and compatible partial orders for inverse
paramedial AG-groupoid are introduced and investigated. This idea is further proceeded
to completely inverse paramedial AG-groupoids. Various notions for completely inverse
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paramedial AG-groupoids are defined and investigated. Furthermore, some congruences on
completely inverse paramedial AG-groupoids are introduced and characterized. The con-
cept of separative ordered and completely separative, normal sub-groupoid, pseudo normal
congruence pair, and normal congruence pair for the class of completely inverse parame-
dial AG-groupoids are also introduced and investigated. Various examples are provided for
justification of the produced results.
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