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Abstract.: Our aim in this paper is to give the notion of generalized topo-
logical groupoid which is a generalization of the topological groupoid by
using the notion of generalized topology defined by Csásźar [6]. We in-
vestigate the basic facts in the groupoid theory in terms of generalized
topological groupoids. We present the action of a generalized topological
groupoid on a generalized topological space. We obtain some character-
izations about this concept that is called the generalized topological ac-
tion. Beside these, we give definition of a generalized topological crossed
module by generalizing the concept of crossed module defined on topo-
logical groupoids. At the last part of the study, we show how a generalized
topological crossed module can be obtained from a generalized topologi-
cal groupoid and how a generalized topological groupoid can be obtained
from a generalized topological crossed module.
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1. INTRODUCTION

After Cśasźar [6] gave the notions of generalized topological space and generalized
neighborhood systems in 2002, many topologists applied the concepts in general topology
to the generalized topological spaces: separation axioms in generalized topologies, product
of generalized topologies, generalized continuity, generalized compactness, generalized
connectedness, etc. [1, 7, 8, 10, 14, 16]

This topological concept was combined with algebra in 2013 by Hussain and et al. [12].
They have defined a generalized topological group as a group endowed with a generalized
topology such that the multiplication and inversion of the group are generalized continuous
according to this generalized topology. They have obtained some characterizations of the
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generalized topological group in their studies. Afterwards, in 2014, they defined the notion
of generalized action using this concept [13].

Although the concept of groupoid which was the subject of this study was first de-
fined as an algebraic concept by Brandt [2] in 1926, its categorical definition was given by
Ehresmann [9] in 1958. In his own work, Ehresmann deals with the concept of action of a
groupoid. Afterwards, the action of a groupoid has been studied from different perspectives
by many mathematicians in terms of algebraic, topological and differentiable [11, 17].

Another concept we deal with in this study is the concept of crossed module. Crossed
modules can be defined over several algebraic structures. The definition of crossed module
over groupoids belongs to Brown and Higgins [4]. In this work, we use the definition given
by Brown and Higgins.

In this study, we define the generalized topological groupoid by combining the concepts
of generalized topological space and groupoid. We reinterpret the basic information in
the groupoid theory using this new concept. We obtain the generalized topological action
groupoid by defining the action of a generalized topological groupoid. Also, we present
the concept of crossed module on the generalized topological groupoids which we called
as generalized topological crossed module. Finally, we show how a generalized topolog-
ical crossed module can be obtained from a generalized topological groupoid and how a
generalized topological groupoid can be obtained from a generalized topological crossed
module.

2. PRELIMINARIES

The basic reminders about the concepts to be used in the work will be here made. These
basic reminders will be given in two subsections:G-topological structures and groupoids.

2.1. Generalized Topological Structures
The concept of generalized topological space, defined by Csásźar, and some basic con-

cepts to be used in study will be here recalled. In addition, some information about the
generalized topological group defined by Hussain and et all will be given. For detailed
information on these, readers may refer to [6] and [12].

Definition 2.1. [6] Let g = {Oi | Oi ⊂ M, i ∈ I} denote a subfamily of power set
P (M), whereM is a nonempty set. If the emptyset∅ belongs tog andg is closed under
the arbitrary union, theng is called a generalized topology. A pair(M, g) is also called
generalized topological space or GTS.

EachOi ∈ g is saidg-open set and the complement ofOi ∈ g is saidg-closed set.
It is obvious that ag-closed set is complement of ag-open set. The union of allOi ∈ g
is denoted byUg. If Ug = M , then(M, g) is said to be strong. It is obvious that every
topology is a generalized topology.

Example 2.2. For a setM = {m,n, k}, the subfamily

g = {∅, {m}, {n}, {m,n}} ⊂ P (M)

is clearly a generalized topology.

Definition 2.3. [6] Let us consider the mappingξ : M → P (P (M)) and let us take
any subsetV ∈ ξ(m) containsm for any pointm ∈ M . ThenV is called generalized
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neighborhood(G-neighborhood) ofm. Also, for anym ∈ M if m ∈ V for all V ∈ ξ(m),
thenξ is called a generalized neighbourhood system (G-neighborhood system) onM . We
will denote the set of allG-neighborhood systems onM byΩ or Ω(M).

Now let us give a lemma by combining Lemma 1.2 and Lemma 1.3 of [6]. This lemma
states that there is a match between generalized topologies on a set and generalized neigh-
borhood systems. More precisely, a generalized neighborhood system determines some
generalized topology, and conversely a generalized topology determines some generalized
neighborhood systems.

Lemma 2.4. [12] Let Ω be aG-neighborhood system onM , let g ⊂ P (M). For O ∈ g
andm ∈ O, there exists a subsetU ∈ ξ(m), ξ ∈ Ω, m ∈ U ⊂ O if and only if g is a
G-topology onM .

Definition 2.5. [6] A mapρ : (M, g) → (N, h) is said
i) (g, h)-continuous ifρ−1(O) ∈ g for anyO ∈ h.
ii) (g, h)-open ifρ(O) ∈ h for anyO ∈ g.
iii) (g, h)-homeomorphism ifρ is bijective,(g, h)-continuous, andρ−1 is (h, g)-continuous.

Throughout the paper we will use the notationsG-continuous,G-open,G-homeomorphism
as independent of the generalized topologies for the concepts above.

Definition 2.6. [10] Let(M, g) be a GTS and∅ 6= N ⊂ M . Then the subspaceG-topology
of N is G-topologygN = {N ∩ O | O ∈ g} onN . The pair(N, gN ) is called a subspace
GTS of(M, g).

Lemma 2.7. [10] If ρ : (M, g) → (N, h) is G-continuous, then for any∅ 6= K ⊂ M the
restrictionρ |K : (K, gK) → (ρ(K), hρ(K)) is G-continuous.

Let us now give the definition ofG-topological group.

Definition 2.8. [12] A G-topological groupG is a group endowed with aG-topology such
that the structure maps ofG areG-continuous maps.

Example 2.9. [12] The group(IR, +) is a GTS under the generalized topologyg generated
by the basisA = {(−∞, a1), (a2,∞) : a1, a2 ∈ IR}, whereIR denotes the real numbers.
Therefore,((IR,+), g) is aG-topological group.

Proposition 2.10. [12] Any subgroup of aG-topological group is also aG-topological
group. It is calledG-topological subgroup.

Definition 2.11. [12] Let(G, g) and(G′ , g′) be twoG-topological groups andτ : G→ G′

be a group homomorphism. Ifτ is G-continuous, it is called aG-homomorphism.

If τ is aG-homeomorphism, then it is said aG-isomorphism. The composition of twoG-
homomorphisms is also aG-homomorphism. Further, the identity map is aG-isomorphism.
Thus,G-topological groups form a category denoted byGT G.

Definition 2.12. [12] Let (M, g) be a GTS. If for anym1,m2 ∈ M there is aG - homeo-
morphismρ : (M, g) → (M, g) satisfyingρ(m1) = m2, thenM is calledG-homogeneous.

Theorem 2.13. [12] Let (G, g) be aG-topological group. For anya ∈ G, the left transla-
tion la : (G, g) → (G, g), la(x) = ax is aG-homeomorphism.
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This theorem is also valid to the right translation.
EachG-topological group(G, g) isG-homogeneous, namely for any elementsa, a

′ ∈ G
there is always aG-homeomorphismla′a−1 : (G, g) → (G, g) satisfyingla′a−1(a) = a

′
.

Theorem 2.14. [12] A G-homomorphism which isG-continuous at the identity isG - con-
tinuous everywhere.

Theorem 2.15. [12] If a subgroupH of a G-topological groupG contains a non-empty
G-open set, then it isG-open inG.

For the following proposition, let us recall the definition of a Hausdorff GTS from [8].

Definition 2.16. [8] Let (M, g) be a GTS. If for each pair of pointsm1 6= m2, there exist
G-open setsO1, O2 ∈ g satisfyingm1 ∈ O1 andm2 ∈ O2 such thatO1 ∩ O2 = ∅, then
(M, g) is called Hausdorff GTS.

Proposition 2.17. [12] In a Hausdorff GTS(M, g), each singleton is aG-closed.

By the proposition above, for aG-topological groupG, the set{e} is G-closed, wheree
is the identity ofG.

Definition 2.18. [13] LetG be aG-topological group and letM be a GTS. AG-action ofG
onM is aG-continuous map. : G×M → M such thate·m = m and(gh)·m = g·(h·m),
for e, g, h ∈ G, m ∈ M .

The spaceM is saidG-G-space. For anym ∈ M , the set

G(m) = {n | n = g·m, ∃g ∈ G}
is called the orbit ofm.

Proposition 2.19. [13] EveryG-actionσ : G×M → M is aG-open map.

Proof. For anyG-open setsO andV in G andM , resp., let us takeO × V ⊂ G × M .
Then,σ(O × V ) =

⋃
g∈G

σg(V ) is a G-open set, because each mapσg : M → M is a

G-homeomorphism. Since theG-open setsO × V form a basis ofG × M , the mapσ is
G-open. ¤
Example 2.20.[13] The action of aG-topological groupG on itself by the left translation is
a G-action. Because, the action has been defined by the multiplication ofG, i.e.,σ(g, h) =
gh, ∀g, h ∈ G.

Definition 2.21. [13] LetG be aG-topological group, letM, N be two GTSs, letσM :
G × M → M and σN : G × N → N be twoG-actions. Then, aG-continuous map
ϑ : M → N is saidG-equivariant if the diagram

G×M
σM //

idG×ϑ

²²

M

ϑ

²²
G×N

σN // N
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is commutative, namely,ϑ(σM (g, m)) = σN (g, ϑ(m)), ∀g ∈ G, ∀m ∈ M .

Definition 2.22. [13] Let M be aG-G-space. Let us take any elementm ∈ M . The
stabilizer ofm in G is the setGm = {a1 ∈ G | a·1m = m} which is a subgroup ofG.

It is clear that ifG is Hausdorff, then the singleton{m} is G-closed. Hence,Gm is
G-closed, soGm is aG-topological group.

Let M be aG-G-space. Then, form ∈ M we have a mapµm : G→ M , µm(g) = g·m
which isG-continuous. Hence, we have

Definition 2.23. [13]
i) If µm is surjective, theG-action is called transitive.
ii) If

⋂
m∈M

Gm = {e}, theG-action is called effective.

2.2. Groupoids
In this subsection, we give some basic reminders about the concept of groupoid which

is the subject of the study. See [3] for details on groupoids.

Definition 2.24. [3] A groupoid consists of the setΓ of the arrows and the setΓ0 of the
objects, together with the source maps : Γ → Γ0, target mapt : Γ → Γ0, the object map
ε : Γ0 → Γ, m 7→ ε(m) = 1m, the inverse mapinv : Γ → Γ, α 7→ inv(α) = α−1, and a
partial multiplication(α, β) 7→ α ◦ β defined on the pullbackΓ2 = Γ s ×t Γ = {(α, β) |
s(α) = t(β)}.

We denote a groupoidΓ over Γ0 by (Γ,Γ0) or Γ or (Γ, s, t, Γ0). The maps in the
definition above are said structure maps of groupoid. For a groupoidΓ overΓ0 andm,n ∈
Γ0, we have the setsStΓm = s−1(m), CoStΓn = t−1(n) and StΓm ∩ CoStΓn =
Γ(m,n). Also, the setΓ(m,m) (or only Γ(m)) is a group with the partial multiplication
in Γ. We say itvertex groupat m. A groupoidΓ is called transitive ifΓ(m,n) 6= ∅ for all
m,n ∈ Γ0. A groupoidΓ is called totally intransitive ifΓ(m,n) = ∅ for everym,n ∈ Γ0

satisfyingm 6= n.

Example 2.25. [3]
i) Every group is a groupoid over its identity.
ii) Every setM(6= ∅) can be thought as a groupoid over itself withs = t = idM

iii) For a setM( 6= ∅), the productM ×M is a groupoid overM . The arrows are ordered
pairs (m,n), m,n ∈ M .

Let us give an example that will be used in the next section.

Example 2.26. [3] LetM be a set,Ω a group and let an action ofΩ onM be· : Ω×M →
M , (α, m) 7→ α·m. We consider the pair of(α, m) as an arrow whose the source ism and
the target isα·m. The partial multiplication is defined by(β, n)◦(α, m) = (βα,m), where
n = α·m. The partial multiplication defined in this way is well-defined. According to this
operation, the unit arrow inm ∈ M is (e,m) and the inverse of(α,m) is (α−1, α·m). The
groupoidΩ×M constructed in this way is called ”action groupoid”.

Definition 2.27. [3, 11] A groupoid homomorphism from(Γ,Γ0) to (Φ,Φ0) is a pair
(λ, λ0) of mapsλ : Γ → Φ, λ0 : Γ0 → Φ0 such thatsΦ ◦ λ = λ0 ◦ sΓ, tΦ ◦ λ = λ0 ◦ tΓ
andλ(α ◦ β) = λ(α) ◦ λ(β), ∀(α, β) ∈ Γ2.
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We sometimes use the only mapλ for (λ, λ0). If λ is a bijection, thenλ : Γ → Φ is a
groupoid isomorphism.

Thus, it is obtained the categoryGpd of the groupoids and groupoid homomorphisms.
A subgroupoid(Γ∗,Γ∗0) of (Γ, Γ0) is a groupoid withΓ∗ ⊂ Γ, Γ∗0 ⊂ Γ0, having the

same source and target maps and partial multiplication. A subgroupoidΓ∗ is called full if
Γ∗(m, n) = Γ(m,n) for all m,n ∈ Γ∗0, and is called wide ifΓ∗0 = Γ0.

Let ∆ be a wide subgroupoid of a groupoidΓ. For allm, n ∈ Γ0 andα ∈ Γ(m,n), if
we haveα∆(m) = ∆(n)α, then∆ is called a normal subgroupoid ofΓ, where∆(m) and
∆(n) denote vertex groups atm andn, respectively.

Example 2.28. [3] For a groupoid homomorphismλ : Γ → Φ, the kernelkerλ = {α ∈
Γ | λ(α) = 1m,∃m ∈ Φ0} is a normal subgroupoid ofΓ, where1m : m → m is the
identity arrow of(Φ,Φ0).

Definition 2.29. [3] In a groupoid(Γ, Γ0), if Γ is a topological space and structure maps
are continuous, then it is called a topological groupoid.

It is clear that a homomorphism between topological groupoids(Γ,Γ0) and(Φ, Φ0) is a
groupoid homomorphism(λ, λ0) : (Γ,Γ0) → (Φ, Φ0) such thatλ andλ0 are continuous.

Let us express the groupoid action.

Definition 2.30. [11, 17]Let (Γ,Γ0) be a groupoid and letM be a set. LetJ : M → Γ0

be a map. A left action ofΓ on M via J is a mapφ : Γs×JM → M, (α, m) 7→ α.m, is
called moment map, satisfying the conditions

i) J(α.m) = t(α) ii) β.(α.x) = (β ◦ α).m iii) (1J(m)).m = m,
for anyα, β ∈ Γ, m ∈ M. The setM is said a leftΓ-set.

A right action of Γ on M is also defined similarly. In this case, we have the map
φ : MJ×tΓ → M, (m,α) 7→ m.α and the first condition becomesJ(m.α) = s(α).

Example 2.31. [11, 17]
(1) Any groupoidΓ acts on itself from both sides by the partial multiplication ofΓ. The
moments ares andt for the left and right actions, respectively.
(2) Any groupoidΓ acts onΓ0 from both sides with momentidΓ0 . The left action isα·m =
t(α) and the right action ism·α = s(α).

Definition 2.32. [4] A crossed module over groupoids is a tripletC = (Υ,Γ, η) together
with a (left) action ofΓ onΥ and a functorη : Υ → Γ, where the groupoidsΥ andΓ have
the same object space andΥ is totally intransitive, such that the following conditions hold:
CR1)η(α·ω) = α ◦ η(ω) ◦ α−1 for ω ∈ Υ(m,m), α ∈ Γ(m,n)
CR2)η(ω1)·ω = ω1 ◦ ω ◦ ω−1

1 for ω, ω1 ∈ Υ(m, m).

Example 2.33. [5] Every groupoidΓ overΓ0 constructs a crossed module over groupoids
with its inner groupIΓ =

⋃
Γ(m). The inclusioninc : IΓ → Γ is a groupoid homomor-

phism, and the groupoidΓ acts as follows onIΓ from left.
· :Γ× IΓ → IΓ

(α, ω) 7→ α·ω = α ◦ ω ◦ α−1

Therefore, the triplet(IΓ, Γ, inc) is a crossed module over groupoids.
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Definition 2.34. [5] Let(Υ1, Γ1, η1) and(Υ2, Γ2, η2) be crossed modules. A crossed mod-
ule homomorphism(τ, ψ) : (Υ1, Γ1, η1) → (Υ2, Γ2, η2) is a pair of groupoid homomor-
phismsτ : Υ1 → Υ2 andψ : Γ1 → Γ2 such that the following equalities are hold:
i) η2(τ(ω)) = ψ(η1(ω)), for all ω ∈ Υ1

ii) τ(α·ω) = ψ(α)·τ(ω), for all ω ∈ Υ1, α ∈ Γ1.

Therefore, we construct the categoryCrsM of the crossed modules over groupoids.

3. G-TOPOLOGICAL GROUPOIDS

We here define the generalized topological groupoid that is a generalization of topolog-
ical groupoids by combining the concepts of generalized topological space and groupoid.
We examine some basic information in the groupoid theory in terms of generalized topo-
logical groupoids. Also we obtain some characterizations about it by defining the action of
a generalized topological groupoid on a GTS.

Definition 3.1. A generalized topological groupoid is a groupoidΓ endowed with aG-
topologyg such that all structure maps ofΓ areG-continuous.

We will write G-topological groupoid for a generalized topological groupoid, for brevity.

Example 3.2. Given any GTS(M, g), if we takeΓ0 = Γ = M and as identity map all
structure maps, one can obtain aG-topological groupoid.

Example 3.3. Given any HaussdorfG-topological groupG, if it is taken asΓ0 = {?},
s, t : Γ = G → {?}, ε(?) = eG, one can obtain aG-topological groupoidΓ over the
singleton{?} with the operations ofG.

Example 3.4. For any strong GTS(M, g), the cartesian productM × M is viewed as
G-topological groupoid over(M × M)0 = M . The source and target maps are the first
and second projection, respectively. By Proposition.2.7 in[7], they areG-continuous maps.
The object mapε : M → M × M defined byε(m) = (m,m) is G-continuous, since
ε−1(O × O) = O is clearlyG-open, wherem ∈ O andO ∈ g. The multiplication is both
unique andG-continuous, because for anym,n ∈ M there is only one arrow fromm to n.
The inverse mapinv : M×M → M×M , inv(m, n) = (n,m) isG-continuous. Because,
for eachG-open setO2 × O1 containing(n, m), the setinv−1(O2 × O1) = O1 × O2 is
G-open set containing(m,n) in M ×M .

Example 3.5. For a strongG-topological groupΓ and a strong GTSM , let us consider
G-action ofΓ on M . Then we construct aG-topological groupoidΓ nM overM , called
actionG-topological groupoid, as follows:

s(α, m) = m, t(α,m) = α.m, ε(m) = (e, m), inv(α,m) = (α−1, α.m)

(β, n) ◦ (α, m) = (βα, m), whenevern = α.m.

The space of objects is clearly a GTS. From Proposition.2.7 in[7], the space of arrows
has a structure ofG-topological space. Since the source map is the first projection, it is
G-continuous map. The target map isG-continuous, because it is defined by theG-action.
Let us show that the object map isG-continuous. First of all, let us state thatΓnM has a
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productG-subspace structure reduced fromΓ×M . Now,letO andU beG-open sets inΓ
andM , respectively. Then, for anyG-open setO × U , we have

ε−1(O × U) =
{

U , if e ∈ O
∅ , if e /∈ O.

From here it is easily seen thatε−1(O × U) is G-open inΓ. So, the object mapε is G-
continuous. The inverse mapinv isG-continuous, because it is the product of the inversion
in Γ and theG-action. Since they areG-continuous, the mapinv is alsoG-continuous. Fi-
nally, let us show that the partial multiplication isG-continuous. The partial multiplication
can be written as a composition of maps as shown in the diagram below.

(ΓnM)s×t(ΓnM)
C2,3→ (Γ× Γ)× (M ×M)

µ×Id−→ Γ×M ×M
(π1×π3)−→ (ΓnM)

((β, n), (α,m)) 7−→ ((β, α), (n,m)) 7−→ (βα, n, m) 7−→ (βα, m)

, whereµ is the composition ofG-topological groupΓ, π1 is the first projection,π3 is the
third projection andC2,3 is the twisting function that changes the locations of the second
and third elements. Since all of these maps areG-continuous, the partial multiplication is
G-continuous.

Therefore,ΓnM is aG-topological groupoid.

Definition 3.6. A G-topological groupoid homomorphism from(Γ,Γ0) to (Γ
′
, Γ

′
0) is a

groupoid homomorphism(λ, λ0) such thatλ andλ0 areG-continuous maps.

This yields the categoryGTGpd of G-topological groupoids and their homomorphisms.

Example 3.7. Let (Γ, s, t, Γ0) be a topological groupoid. Since every topological space
is a GTS,(Γ, s, t, Γ0) is also aG-topological groupoid. Let us consider theG-topological
groupoid(Γ0×Γ0, s̃, t̃,4Γ0) associated toΓ0. Then the anchor map(s, t) : Γ → Γ0×Γ0

is a homomorphism ofG-topological groupoids. Indeed, the generalized continuity of the
anchor map(s, t) follows from the generalized continuity ofs andt. Namely, let us consider
G-open setsO andU in gΓ0 of s(α) ∈ Γ0 andt(α) ∈ Γ0, resp., for any arrowα ∈ Γ. Then
O × U is a basicG-open set containing(s(α), t(α)). Since(Γ, s, t,Γ0) is a topological
groupoid, the set(s, t)−1(O × U) = s−1(O) ∩ t−1(U) is G-open set inΓ. So, the anchor
map(s, t) isG-continuous. On the other hand, from the groupoid theory, the anchor map is
a groupoid homomorphism. Thus(s, t) : Γ → Γ0×Γ0 is a homomorphism ofG-topological
groupoids.

Definition 3.8. LetΓ be aG-topological groupoid overΓ0. AG-subgroupoid ofΓ is a pair
of (Γ∗,Γ∗0) ofG-subspacesΓ∗ ⊂ Γ, Γ∗0 ⊂ Γ0 together with the restriction structure maps. A
G-subgroupoid(Γ∗,Γ∗0) is called wide ifΓ∗0 = Γ0, and is called full ifΓ∗(m, n) = Γ(m, n)
for all m,n ∈ Γ∗0.

The identityG-subgroupoid of aG-topological groupoidΓ is the subgroupoidε(Γ0) =
{1m | m ∈ Γ0} with a subspaceG-topology induced fromΓ. The innerG-subgroupoid of
Γ is the subgroupoidIΓ =

⋃
m∈Γ0

Γ(m, m).
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Definition 3.9. A normalG-subgroupoid of aG-topological groupoid(Γ, Γ0) is a wideG-
subgroupoid∆ such that for anyα ∈ ∆(m,m) and anyβ ∈ Γ with t(β) = s(α) = t(α),
we haveβαβ−1 ∈ ∆.

Definition 3.10. The kernel of aG-homomorphism(λ, λ0) : (Γ,Γ0) → (Γ
′
,Γ

′
0) is the set

kerλ = {α ∈ Γ | λ(α) = 1m for some m ∈ Γ
′
0}.

Example 3.11. Let λ : Γ → Γ′ be aG-homomorphism. Then, from Definition 2.6,kerλ
has clearly the structure ofG-subspace. Alsokerλ is the wideG-subgroupoid ofΓ, and so
it is a normalG-subgroupoid ofΓ. It is easily seen thatkerλ is wide inΓ, and normality
follows from

λ(αγα−1) = λ(α)λ(γ)λ(α−1) = λ(α)λ(α−1) = 1, γ ∈ kerλ(m), α ∈ Γ(m,n).

Definition 3.12. Let (Γ,Γ0) be aG-topological groupoid.Γ is transitive if its underly-
ing groupoid is transitive, and is totally intransitive if its underlying groupoid is totally
intransitive.

As an example, it is obvious that the identityG-subgroupoid and the innerG-subgroupoid
of Γ are totally intransitive, because their underlying groupoids are totally intransitive.

Let us now give action of aG-topological groupoid on a GTS.

Definition 3.13. LetΓ be aG-topological groupoid and letM be a GTS. LetJ : M → Γ0

be aG-continuous map, called moment map. A leftG-action ofΓ on M via J is a G-
continuous mapφ : Γs×JM → M, (α, m) 7→ φ(α,m) = α.m verifying the equations
i) J(φ(α,m)) = t(α), ii) φ(β, (φ(α, m)) = φ((β ◦ α),m), iii) φ(1J(m),m) = m,

whereα, β ∈ Γ, m ∈ M. The setM is called a leftG-Γ-space. Similarly, it can be also
define a rightG-action.

Example 3.14. EveryG-topological groupoidΓ acts on itself from both sides by the par-
tial multiplication of Γ. The moment maps ares and t for the left and rightG-actions,
respectively.

Example 3.15. Let (Γ, s, t, Γ0) be aG-topological groupoid. ThenΓ acts on theM = Γ0

via theG-continuous mapJ = Id : M = Γ0 → Γ0. It is easily shown that the conditions
of G-action are hold. So, it is enough to say that the action map

φ : Γ s ×J Γ0 → Γ0, (α, m) 7→ φ(α,m) = t(α).

is G-continuous. Clearly, sincet is G-continuous, the actionφ is G-continuous.

LetΓ be aG-topological groupoid overΓ0, andM aG-Γ−space. Forx ∈ Γ0, we call the
Γx = s−1(x) ∩ t−1(x) aG-stable subgroup. Namely,Γx is aG-topological group with the
structure ofG-subspace induced fromG-topological groupoidΓ. Also, the multiplication
of Γx is partial multiplication inΓ. The unit element isx and every elementα ∈ Γx has an
inverse elementα−1.

The actionG-topological groupoid given in Example 3.5 was constructed using the
G-topological group action. Now let’s give its construction in case of theG-topological
groupoid action.

Example 3.16. Let (Γ, s, t, µ, ε, inv, Γ0) be aG-topological groupoid acting on GTSM
via J : M → Γ0. Then we can obtain aG-topological groupoid with the space of objects



44 Mustafa Habil G̈ursoy

that is the GTSM and the space of morphisms is GTSΓ s ×J M . It is called actionG-
topological groupoid and denoted byΓnM ⇒ M or by (ΓnM, s1, t1, µ1, ε1, inv1,M).

In theG-topological groupoid(ΓnM, s1, t1, µ1, ε1, inv1,M), an arrow fromm to m
′

is a pair (α,m) such that the equalityα·m = m
′
. Also we can list the structure maps of

theG-topological groupoid(ΓnM, s1, t1, µ1, ε1, inv1,M) as follows:
s1(α, m) = m,

t1(α, m) = α·m = m
′
,

ε1(m) = (ε(J(m)),m),

µ1((β,m
′
), (α, m)) = (µ(β, α),m) with m

′
= α·m,

inv1(α, m) = (α−1, α·m), whereα−1 is the inverse element ofα ∈ Γ.
Now let us show that theG-continuities of the structure maps.G-continuity of the source

maps1 follows from theG-continuity of the second projection. The target mapt1 is itself
G-action, so it is obviousG-continuous. The object mapε1 given by the productε × Id :
M → ΓnM of the identityId and the object mapε of G-topological groupoid(Γ,Γ0) is
G-continuous. Also the inverse mapinv1 is G-continuous, becauseinv1 is defined as the
product of the inverse mapinv and theG-action. Finally, the partial multiplication can be
considered as a composition as follows:

(ΓnM)s×1 t1
(ΓnM)

C2,3→ (Γ× Γ)× (M ×M)
µ×Id−→ Γ×M ×M

(π1×π3)−→ (ΓnM)

((β, n), (α, m)) 7−→ ((β, α), (n,m)) 7−→ (µ(β, α), n, m) 7−→ (µ(β, α), m)

, whereπ1 is the first projection,π3 is the third projection andC2,3 is the twisting function
that changes the locations of the second and third elements. Since all of these maps are
G-continuous, the partial multiplicationµ1 is G-continuous.

Consequently,(ΓnM, s1, t1, µ1, ε1, inv1,M) is aG-topological groupoid.

The following definition gives a notion of action of aG-topological groupoid on another
G-topological groupoid.

Definition 3.17. Let (Γ,Γ0) and (Ω, Ω0) be G-topological groupoids and letJ : Ω →
Γ0 be aG-continuous map, whereΓ0 is regarded as aG-topological groupoid consist of
identities only. Then it is called thatΓ acts onΩ via J if for eachα ∈ Γ(m,n) and each
elementβ ∈ J−1[m] there is an arrowα·β ∈ J−1[n] such that the following rules hold:
i) 1J(β)

·β = β, ∀β ∈ Ω
ii) α·(β2 • β1) = (α·β2) • (α·β1), ∀β1, β2 ∈ Ω,∀α ∈ Γ
iii) α·1(α

·
2β) = (α1 ◦ α2)·β, ∀α1, α2 ∈ Γ, β ∈ Ω.

In that case it is said thatΩ is aG-Γ-groupoid.

If Ω is discrete, this definition be same with the Definition 3.13, where by a discrete
groupoid we mean a groupoid that has only unit arrows as morphisms.
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Definition 3.18. Let Γ be aG-topological groupoid acting on bothG-topological spaces
M andN . A G-continuous mapϕ : M → N is Γ-equivariant iffJM (m) = JN (ϕ(m))
andϕ(α·m) = α·ϕ(m), ∀m ∈ M , wheres(α) = J(m).

The conditions in the definition are equivalent to being that the following diagrams are
commutative:

M
ϕ //

JM

¼¼2
22

22
22

22
22

22
N

JN

§§¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

Γ0

Γ×M
Id×ϕ //

·

²²

Γ×N

·

²²
M

ϕ // N

More generally, we can generalize the definition above for twoG-topological groupoids
in the following way.

Let Γ andΓ′ be G-topological groupoids acting onG-topological spacesM andM ′,
respectively. Letλ : Γ → Γ′ be aG-homomorphism, letϕ : M → M ′ be aG-continuous
map. In this case, if the diagram

Γ×M
λ×ϕ //

·

²²

Γ′ ×M ′

·

²²
M

ϕ // M ′

is commutative, thenϕ is called equivariant map.
An action of aG-topological groupoid on a GTS defines a relation as follows:

Definition 3.19. Let (Γ,Γ0) be aG-topological groupoid acting on a GTSM . We define a
relation, called orbit relation, onM as follows:

m ∼ n iff ∃α ∈ Γ such that α·m = n

We denote the orbit (or quotient) space according to this relation byM/Γ. Its elements are
said the orbits of theG-action and are denoted byΓ ·m, for m ∈ M . Also, the canonical
projection which assigns to eachm in M its orbit, is (often) denoted byπ. Furthermore,
M/Γ has quotientG-topology by the canonical projectionπ : M → M/Γ (namely, a set
O ⊂ M/Γ is G-open inM/Γ iff theπ−1(O) is G-open inM ). The GTSM/Γ is called the
orbit space.

Proposition 3.20. The orbit relation defined above is an equivalence relation.

Proof. The relation∼ is reflexive, because from the third conditions ofG-action we have
1·mm = m. For anym,n ∈ M , let m ∼ n. Hence there is an arrowα ∈ Γ such that
n = α·m. Since there existsα−1 ∈ Γ such thatα−1·n = m, it follows that n ∼ m.
Finally if m ∼ n andn ∼ k then there exist arrowsα, β ∈ Γ such thatn = α·m and
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k = β·n. From the second condition ofG-action, we havek = (β ◦ α) ·m andm ∼ k.
Thus∼ is an equivalence relation. ¤

4. G-TOPOLOGICAL CROSSEDMODULES

We here introduce a new concept with named ofG-topological crossed module by defin-
ing a crossed module overG-topological groupoids. Therefore, we construct the category
of G-topological crossed modules.

Definition 4.1. A crossed module overG-topological groupoids is a tripletC = (Υ, Γ, η)
together with a (left)G-action ofΓ on Υ and aG-homomorphismη : Υ → Γ (is called
boundary map), where theG-topological groupoidsΥ andΓ have the same object space
andΥ is totally intransitive, such that the following conditions hold:
GCR1)η(α·ω) = α ◦ η(ω) ◦ α−1 for ω ∈ Υ(m,m), α ∈ Γ(m,n)
GCR2)η(ω1)·ω = ω1 ◦ ω ◦ ω−1

1 for ω, ω1 ∈ Υ(m,m).

We will say G-topological crossed module for a crossed module ofG - topological
groupoids.

Let us now give a main example aboutG-topological crossed module.

Example 4.2. Let Γ be aG-topological groupoid and letIΓ =
⋃

m∈Γ0

Γ(m,m) be inner

G-topological subgroupoid ofΓ. Then, if we take the inclusion mapi : IΓ → Γ as the
boundary mapη, we obtain aG-topological crossed moduleC = (IΓ, Γ, i).

Firstly, let us define theG-action ofΓ onIΓ. TheG-topological groupoidΓ acts on inner
G-topological subgroupoidIΓ via the moment mapJ : IΓ → Γ0, J(ω) = s(ω) = m for
anyω ∈ Γ(m,m) as follows by the partial multiplication ofΓ:

· : Γ× IΓ → IΓ, (α, ω) 7→ α·ω = α−1 ◦ ω ◦ α.

Let us now control the rules in Definition 3.17 are hold.
i) Let us fixed anyω ∈ IΓ asω ∈ Γ(m,m) ⊂ IΓ. Then

1·J(ω)ω = 1·mω = 1m ◦ ω ◦ 1−1
m = 1m ◦ ω ◦ 1m = ω.

ii) For any elementsω1, ω2 ∈ Γ(m,m) ⊂ IΓ andα ∈ Γ(m,n),

α·(ω1 ◦ ω2) = α ◦ (ω1 ◦ ω2) ◦ α−1 = α ◦ ω1 ◦ 1m ◦ ω2 ◦ α−1

= α ◦ ω1 ◦ α−1 ◦ α ◦ ω2 ◦ α−1

= α·ω1 ◦ α·ω2.

iii) For anyα1 ∈ Γ(m,n), α2 ∈ Γ(n, k) andω ∈ Γ(m,m) ⊂ IΓ,

(α1 ◦ α2)·ω = (α1 ◦ α2) ◦ ω ◦ (α1 ◦ α2)−1 = α1 ◦ α2 ◦ ω ◦ α−1
2 ◦ α−1

1

= α1 ◦ (α·2ω) ◦ α−1
1

= α·1(α
·
2ω).

On the other hand, it is obvious that the action isG-continuous, since it is defined by the
partial multiplication ofG-topological groupoidΓ. Therefore,Γ acts onIΓ via J .

Now let us show that the conditions of (GCR1) and (GCR2) are hold.
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GCR1)

η(α·ω) = η(α ◦ ω ◦ α−1) = i(α ◦ ω ◦ α−1) = α ◦ ω ◦ α−1 = α ◦ i(ω) ◦ α−1

= α ◦ η(ω) ◦ α−1.

GCR2)

η(ω1)·ω = η(ω1) ◦ ω ◦ η(ω1)−1 = i(ω1) ◦ ω ◦ i(ω1)−1 = ω1 ◦ ω ◦ ω−1
1 .

Therefore,C = (IΓ,Γ, i) is aG-topological crossed module.

Definition 4.3. LetC = (Υ, Γ, η) andC′ = (Υ′, Γ′, η′) beG-topological crossed modules.
A pair f = (f1, f2) : C → C′ is called a homomorphism ofG-topological crossed modules,
if theG-continuous mapsf1 : Γ → Γ′ andf2 : Υ → Υ′ holdf1η = η′f2 andf2(α · ω) =
f1(α) · f2(ω).

The conditions in the definition are equivalent to be commutative of the following dia-
grams:

Υ
f2 //

η

²²

Υ′

η′

²²
Γ

f1

// Γ′

Γ×Υ
f1×f2 //

·

²²

Γ′ ×Υ′

·

²²
Υ

f2

// Υ′

Therefore,G-topological crossed modules form a category denoted byGT CrM .

5. FROM GT Gpd TO GT CrM AND FROM GT CrM TO GT Gpd

In the last part of the study, we prove how a generalized topological crossed module
can be obtained when given a generalized topological groupoid, and how a generalized
topological groupoid can be obtained from it when given a generalized topological crossed
module.

Theorem 5.1.EveryG-topological groupoid(Γ, Γ0) induces aG-topological crossed mod-
ule.

Proof. To show that aG-topological groupoid(Γ, Γ0) induces aG-topological crossed
moduleC = (Υ,Γ, η), we need a totally intransitiveG - topological groupoidΥ and a
G-topological groupoid that acts onΥ, both of which have the same object space. Further-
more, we must show thatδ : Υ → Γ is aG-homomorphism.

If we consider the isotropy groupsΥ(m) = {α ∈ Γ | s(α) = t(α) = m}, m ∈ Γ0,
which each is aG-topological group, then we obtain theG-topological groupoid

⋃
m∈Γ0

Υ(m)

that is totally intransitive. We denote it asΥ =
⋃

m∈Γ0

Υ(m).

From Example 4.2, we have theG-action ofG-topological groupoidΓ on the totally
intransitiveG-topological groupoidΥ =

⋃
m∈Γ0

Υ(m).
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On the other hand, we determine the boundary mapη as inclusion mapη = i : Υ =⋃
m∈Γ0

Υ(m) → Γ.

After these determinations, let us control the conditions GCR1) and GCR2).
GCR1)

η(α · ω) = η(α ◦ ω ◦ α−1) = i(α ◦ ω ◦ α−1) = α ◦ ω ◦ α−1 = α ◦ i(ω) ◦ α−1

= α ◦ η(c) ◦ α−1.

GCR2)

η(ω1) · ω = η(ω1) ◦ ω ◦ η(ω1)−1 = i(ω1) ◦ ω ◦ i(ω1)−1 = ω1 ◦ ω ◦ ω−1
1 .

ThereforeC = (Υ, Γ, i) is a G-topological crossed module. Consequently, eachG-
topological groupoid(Γ, Γ0) contains aG-topological crossed module.

¤

As a result of this theorem, we define a functorΘ : GTGpd → GT CrM .

Theorem 5.2. EveryG-topological crossed moduleC = (Υ, Γ, η) induces aG-topological
groupoidΓ′.

Proof. Let C = (Υ, Γ, η) be aG-topological crossed module. Then, we can obtain the
actionG-topological groupoid using theG-action ofΓ onΥ. This is the main idea of proof.

Let us consider the productG-topological spaceΓ′ = Γ n Υ = {(α, ω) | α ∈ Γ, ω ∈
Υ(t(α))}. Then, the algebraic andG-topological details ofΓ′ = ΓnΥ are obtained in the
same way as in Example 3.16 (see Example 3.16).

¤

As a result of this theorem, we define a functorΣ : GT CrM → GTGpd.

Remark 5.3. It can normally be expected that these categories should be equivalent. But
the example given below is a counterexample showing that this is not true.

Example 5.4. We know from the Example 3.3 that every HaussdorfG-topological group
Γ is aG-topological groupoid with one object over its identity, namelyΓ ⇒ ∗. According
to the Theorem 5.1, we obtain aG-topological crossed moduleΘ(Γ) = (Υ = Γ,Γ, i),
whereΓ acts on itself via the conjugation. Now let us apply the functorΣ to Θ(Γ) =
(Γ,Γ, i). Then, according to the Theorem 5.2, we obtain an actionG-topological groupoid
Σ ◦Θ(Γ) = Γ× Γ overΓ with s(α, β) = β andt(α, β) = αβα−1, whereΓ acts onΓ by
the conjugation.

It is clear that theG-topological groupoidsΓ ⇒ ∗ andΓ × Γ ⇒ Γ are not isomorphic
in the categoryGTGpd, because their object spaces are different. Therefore, the functor
Σ ◦Θ is not naturally equivalent to the functor1GTGpd.
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