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Abstract.: Our aim in this paper is to give the notion of generalized topo-
logical groupoid which is a generalization of the topological groupoid by
using the notion of generalized topology defined bya<ar [6]. We in-
vestigate the basic facts in the groupoid theory in terms of generalized
topological groupoids. We present the action of a generalized topological
groupoid on a generalized topological space. We obtain some character-
izations about this concept that is called the generalized topological ac-
tion. Beside these, we give definition of a generalized topological crossed
module by generalizing the concept of crossed module defined on topo-
logical groupoids. At the last part of the study, we show how a generalized
topological crossed module can be obtained from a generalized topologi-
cal groupoid and how a generalized topological groupoid can be obtained
from a generalized topological crossed module.
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1. INTRODUCTION

After Csasar [6] gave the notions of generalized topological space and generalized
neighborhood systems in 2002, many topologists applied the concepts in general topology
to the generalized topological spaces: separation axioms in generalized topologies, product
of generalized topologies, generalized continuity, generalized compactness, generalized
connectedness, etc. [1, 7, 8, 10, 14, 16]

This topological concept was combined with algebra in 2013 by Hussain and et al. [12].
They have defined a generalized topological group as a group endowed with a generalized
topology such that the multiplication and inversion of the group are generalized continuous
according to this generalized topology. They have obtained some characterizations of the
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generalized topological group in their studies. Afterwards, in 2014, they defined the notion
of generalized action using this concept [13].

Although the concept of groupoid which was the subject of this study was first de-
fined as an algebraic concept by Brandt [2] in 1926, its categorical definition was given by
Ehresmann [9] in 1958. In his own work, Ehresmann deals with the concept of action of a
groupoid. Afterwards, the action of a groupoid has been studied from different perspectives
by many mathematicians in terms of algebraic, topological and differentiable [11, 17].

Another concept we deal with in this study is the concept of crossed module. Crossed
modules can be defined over several algebraic structures. The definition of crossed module
over groupoids belongs to Brown and Higgins [4]. In this work, we use the definition given
by Brown and Higgins.

In this study, we define the generalized topological groupoid by combining the concepts
of generalized topological space and groupoid. We reinterpret the basic information in
the groupoid theory using this new concept. We obtain the generalized topological action
groupoid by defining the action of a generalized topological groupoid. Also, we present
the concept of crossed module on the generalized topological groupoids which we called
as generalized topological crossed module. Finally, we show how a generalized topolog-
ical crossed module can be obtained from a generalized topological groupoid and how a
generalized topological groupoid can be obtained from a generalized topological crossed
module.

2. PRELIMINARIES

The basic reminders about the concepts to be used in the work will be here made. These
basic reminders will be given in two subsectiogstopological structures and groupoids.

2.1. Generalized Topological Structures

The concept of generalized topological space, defined fag#&ss and some basic con-
cepts to be used in study will be here recalled. In addition, some information about the
generalized topological group defined by Hussain and et all will be given. For detailed
information on these, readers may refer to [6] and [12].

Definition 2.1. [6] Letg = {O; | O; C M,i € I} denote a subfamily of power set
P(M), whereM is a nonempty set. If the emptygebelongs tog and g is closed under
the arbitrary union, thery is called a generalized topology. A pdii/, g) is also called
generalized topological space or GTS.

EachO; € g is saidg-open set and the complement©f € g is saidg-closed set.
It is obvious that gy-closed set is complement ofgaopen set. The union of alD; € g
is denoted bytly. If L; = M, then(M,g) is said to be strong. It is obvious that every
topology is a generalized topology.

Example 2.2. For a setM = {m, n, k}, the subfamily
g =A{0.{m}, {n},{m,n}} C P(M)
is clearly a generalized topology.

Definition 2.3. [6] Let us consider the mapping: M — P(P(M)) and let us take
any subsel” € ¢£(m) containsm for any pointm € M. ThenV is called generalized
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neighborhood G-neighborhood) ofn. Also, foranym € M if m € V forall V € £(m),
then¢ is called a generalized neighbourhood systg&imgéighborhood system) aif. We
will denote the set of alj-neighborhood systems dif by 2 or Q(M).

Now let us give a lemma by combining Lemma 1.2 and Lemma 1.3 of [6]. This lemma
states that there is a match between generalized topologies on a set and generalized neigh-
borhood systems. More precisely, a generalized neighborhood system determines some
generalized topology, and conversely a generalized topology determines some generalized
neighborhood systems.

Lemma 2.4. [12] Let2 be aG-neighborhood system oW, letg ¢ P(M). ForO € g
andm € O, there exists a subsét € {(m), { € Q, m € U C O ifand only ifg is a
G-topology onM.

Definition 2.5. [6] Amapp : (M,g) — (N, b) is said

i) (g, h)-continuous ifp~1(O) € g foranyO € b.

ii) (g,h)-openifp(O) € hforanyO € g.

iii) (g, h)-homeomorphism ff is bijective,(g, h)-continuous, ang " is (b, g)-continuous.

Throughout the paper we will use the notatiglisontinuous@-open,G-homeomorphism
as independent of the generalized topologies for the concepts above.

Definition 2.6. [10] Let (M, g) be a GTS and # N C M. Then the subspacgtopology
of N is G-topologygy = {N N O | O € g} onN. The pair(N, gy) is called a subspace
GTS of(M, g).

Lemma 2.7. [10] If p : (M, g) — (N, b) is G-continuous, then for an§ # K C M the
restrictionp |k: (K, gx) — (p(K), b,(x)) is G-continuous.
Let us now give the definition af-topological group.

Definition 2.8. [12] A G-topological groupG is a group endowed with -topology such
that the structure maps @ are G-continuous maps.

Example 2.9.[12] The group(/ R, +) is a GTS under the generalized topolggyenerated
by the basisd = {(—oc0, a1), (a2,0) : a1, ae € IR}, wherel R denotes the real numbers.
Therefore((IR,+), g) is aG-topological group.

Proposition 2.10. [12] Any subgroup of & -topological group is also & -topological
group. It is calledG-topological subgroup.

Definition 2.11. [12] Let(G, g) and (G , g') be twog-topological groups and : G — G’
be a group homomorphism. #fis G-continuous, it is called &-homomorphism.

If 7is aG-homeomorphism, then it is saidjaisomorphism. The composition of twg
homomorphisms is also@homomorphism. Further, the identity map i§-dsomorphism.
Thus,G-topological groups form a category denoteddi/G.

Definition 2.12. [12] Let (M, g) be a GTS. If for anyn,, ms € M there is ag - homeo-
morphismp : (M, g) — (M, g) satisfyingo(m1) = ms, thenM is calledG-homogeneous.

Theorem 2.13.[12] Let (G, g) be ag-topological group. For any: € G, the left transla-
tionl, : (G,g) — (G,g), lo(x) = az is aG-homeomorphism.
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This theorem is also valid to the right translation.
Eachg-topological groug G, g) is G-homogeneous, namely for any elements’ € G
there is always g-homeomorphisnd, . : (G, g) — (G, g) satisfyingl,/,—:(a) = a.

a

Theorem 2.14.[12] A G-homomorphism which i§-continuous at the identity i§ - con-
tinuous everywhere.

Theorem 2.15. [12] If a subgroupH of a G-topological groupG contains a non-empty
G-open set, then it i§-open inG.

For the following proposition, let us recall the definition of a Hausdorff GTS from [8].
Definition 2.16. [8] Let (M, g) be a GTS. If for each pair of points; # mo, there exist

G-open set®), O, € g satisfyingm; € O; andmsy € O, such thatO; N O, = 0, then
(M, g) is called Hausdorff GTS.

Proposition 2.17. [12] In a Hausdorff GTSM, g), each singleton is &-closed.

By the proposition above, for@-topological grougs, the set{e} is G-closed, where
is the identity ofG.

Definition 2.18. [13] LetG be ag-topological group and led/ be a GTS. Aj-action of G
on M is aG-continuous map: G x M — M such that'm = m and(gh) m = g (h'm),
fore,g,h € G,m e M.

The spacéV/ is saidG-G-space. For anyh € M, the set
G(m)={n|n=gm,3g € G}
is called the orbit oin.
Proposition 2.19. [13] EveryG-actiono : G x M — M is aG-open map.

Proof. For anyG-open sets) andV in G and M, resp., letus tak® x V C G x M.
Then,o(O x V) = |J 04(V) is aG-open set, because each map: M — M is a

g€G
G-homeomorphism. Since thg-open set$) x V form a basis ofc x M, the mapo is

G-open. O

Example 2.20.[13] The action of &-topological groupG on itself by the left translation is
a G-action. Because, the action has been defined by the multiplicatiGnidd.,o (g, h) =
gh,Vg,h € G.

Definition 2.21. [13] Let G be aG-topological group, letM, N be two GTSs, letj, :
GxM — Mandoy : G x N — N be twoG-actions. Then, &-continuous map
¥ : M — N is saidG-equivariant if the diagram

oM
GxXM-——"——>M
idg X9 9

Gx N—2 5
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is commutative, namely,(ox; (g, m)) = on(g,9(m)), Vg € G,¥Ym € M.

Definition 2.22. [13] Let M be aG-G-space. Let us take any elemente M. The
stabilizer ofm in G is the sets,, = {a; € G | aym = m} which is a subgroup d&.

It is clear that ifG is Hausdorff, then the singletofm} is G-closed. Hence(,, is
G-closed, sds,, is ag-topological group.

Let M be aG-G-space. Then, fom € M we have amap.,,, : G — M, p,,(g9) = gm
which isG-continuous. Hence, we have

Definition 2.23. [13]
i) If u., is surjective, th&j-action is called transitive.
i)If N G, = {e}, theG-action is called effective.
meM
2.2. Groupoids
In this subsection, we give some basic reminders about the concept of groupoid which
is the subject of the study. See [3] for details on groupoids.

Definition 2.24. [3] A groupoid consists of the sEtof the arrows and the sdt, of the
objects, together with the source mapI" — Ty, target mapt : I' — T, the object map
€:Tg — T, mr e(m) =1, theinverse mapnv : I' — T, a — inv(a) = a1, and a
partial multiplication («, 3) — « o 5 defined on the pullback, =T ;s x, I' = {(«, 0) |
s(a) = t(6)}.

We denote a groupoidl overT'y by (I',Ty) or T or (T, s,t,Ts). The maps in the
definition above are said structure maps of groupoid. For a grodpoigrI’y andm, n €
Iy, we have the setStrm = s~ !(m), CoStrn = t~!(n) and Strm N CoStrn =
I'(m,n). Also, the sef’(m, m) (or only I'(m)) is a group with the partial multiplication
inT'. We say itvertex groupatm. A groupoidT is called transitive if"(m, n) # 0 for all
m,n € T'y. A groupoidT is called totally intransitive if’(m,n) = 0 for everym,n € Ty
satisfyingm # n.

Example 2.25. [3]

i) Every group is a groupoid over its identity.

i) Every setM (# @) can be thought as a groupoid over itself with= t = idy,

i) For a set M (# 0), the productM x M is a groupoid ovetf)/. The arrows are ordered
pairs (m,n), m,n € M.

Let us give an example that will be used in the next section.

Example 2.26.[3] Let M be a set{2 a group and let an actiond2onM be : QO x M —

M, (a,m) — a'm. We consider the pair dfx, m) as an arrow whose the sourcerisand

the target iss'm. The partial multiplication is defined iy, n) o (o, m) = (Ba, m), where

n = a’m. The partial multiplication defined in this way is well-defined. According to this
operation, the unit arrow imn € M is (e, m) and the inverse dfo, m) is (!, a'm). The
groupoid2 x M constructed in this way is called "action groupoid”.

Definition 2.27. [3, 11] A groupoid homomorphism froT', I'y) to (P, &) is a pair

()\,/\()) ofmaps)\ - D, N : g — P SUChthaTSq)O)\: Xosr,te o= Agotr
and\(ao f8) = A(a) o A(B), V(«, B) € Ta.
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We sometimes use the only magor (A, Ao). If A is a bijection, them\ : T" — ® is a
groupoid isomorphism.

Thus, it is obtained the catego@pd of the groupoids and groupoid homomorphisms.

A subgroupoid(T'*,Ty) of (I',Ty) is a groupoid withl'* C T, T’ C Ty, having the
same source and target maps and partial multiplication. A subgrotipagicalled full if
I'*(m,n) = T'(m,n) forall m,n € T'§, and is called wide i’ = T'.

Let A be a wide subgroupoid of a groupdid For allm,n € T'y anda € T'(m,n), if
we haveaA(m) = A(n)c, thenA is called a normal subgroupoid bf whereA(m) and
A(n) denote vertex groups at andn, respectively.

Example 2.28. [3] For a groupoid homomorphisth : I' — @, the kernelkerA = {« €
I | Ma) = 1,,,3m € ¢} is a normal subgroupoid df, wherel,, : m — m is the
identity arrow of(®, ®).

Definition 2.29. [3] In a groupoid(T', T'y), if T" is a topological space and structure maps
are continuous, then it is called a topological groupoid.

Itis clear that a homomorphism between topological groupdid§,) and(®, @) is a
groupoid homomorphisr\, \g) : (I, Ty) — (P, Pg) such thath and Ay are continuous.
Let us express the groupoid action.

Definition 2.30. [11, 17]Let (T, T) be a groupoid and led be a set. Let/ : M — Ty
be a map. A left action df on M via Jisamape : T';x ;M — M, (a,m) — a'm, is
called moment map, satisfying the conditions

i) J(am) =t(a) i) B(az)=(Boa)ym i) (Lym)m=m,
foranya,8 € I', m € M. The setM is said a leftl"-set.

A right action ofI' on M is also defined similarly. In this case, we have the map
¢ Myx,I' = M, (m,a) — m a and the first condition becomdgm o) = s(a).

Example 2.31.[11, 17]

(1) Any groupoidl® acts on itself from both sides by the partial multiplicationlof The
moments are andt for the left and right actions, respectively.

(2) Any groupoid” acts onl’ from both sides with momeidr, . The left action isym =
t(«) and the right action isn'a = s(«).

Definition 2.32. [4] A crossed module over groupoids is a triptet= (T, T, 7)) together
with a (left) action ofl’ on Y and a functorm; : T — T, where the groupoid¥ andI" have
the same object space affdis totally intransitive, such that the following conditions hold:
CR1)n(aw) = aon(w)oa~tforw e Y(m,m),a € I'(m,n)

CR2)7(w;)'w = w1 owowy ! for w,w; € Y(m,m).

Example 2.33.[5] Every groupoid® overI'y constructs a crossed module over groupoids

with its inner groupIT" = [ JI'(m). The inclusioninc : IT' — T"is a groupoid homomor-
phism, and the groupoill acts as follows odT" from left.

I'x IT' — IT

(a,w) » aw=aowoa !

Therefore, the tripletIT', T, inc) is a crossed module over groupoids.
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Definition 2.34. [5] Let(Y,T'1, 1) and (Y9, I's, 72) be crossed modules. A crossed mod-
ule homomorphisnr, ¢) : (T1,1,1m1) — (T2,T'2,72) is a pair of groupoid homomor-
phismsr : T; — T, and : I';y — I's such that the following equalities are hold:

) n2(7(w)) = P(m(w)), forall w € T,
i) 7(a'w) = ¢Y(a) T(w), forallw € T, € T.

Therefore, we construct the catega@ry s of the crossed modules over groupoids.

3. G-TorPOLOGICAL GROUPOIDS

We here define the generalized topological groupoid that is a generalization of topolog-
ical groupoids by combining the concepts of generalized topological space and groupoid.
We examine some basic information in the groupoid theory in terms of generalized topo-
logical groupoids. Also we obtain some characterizations about it by defining the action of
a generalized topological groupoid on a GTS.

Definition 3.1. A generalized topological groupoid is a groupdidendowed with &;-
topologyg such that all structure maps ®fare G-continuous.

We will write G-topological groupoid for a generalized topological groupoid, for brevity.

Example 3.2. Given any GTSM, g), if we take['y, = I' = M and as identity map all
structure maps, one can obtaindatopological groupoid.

Example 3.3. Given any Haussdorf-topological groupG, if it is taken asl'y = {x},
s,t : T' =G — {x}, e(x) = eg, One can obtain &-topological groupoidl’ over the
singleton{x} with the operations of.

Example 3.4. For any strong GTS M, g), the cartesian producd/ x M is viewed as
G-topological groupoid ovefM x M), = M. The source and target maps are the first
and second projection, respectively. By Proposition.2[7]nthey areG-continuous maps.
The object map : M — M x M defined bye(m) = (m,m) is G-continuous, since
e (O x O) = O is clearlyG-open, wheren € O andO € g. The multiplication is both
unigue andj-continuous, because for any, n € M there is only one arrow from to n.
The inverse mapnov : M x M — M x M, inv(m,n) = (n,m) is G-continuous. Because,
for eachG-open se), x O; containing(n,m), the setinv=1(Oz x O1) = O1 x Oy is
G-open set containingmn, n) in M x M.

Example 3.5. For a strongG-topological groupl’ and a strong GTSV/, let us consider
G-action ofl" on M. Then we construct g-topological groupoid® x M over M, called
actionG-topological groupoid, as follows:

s(a,m) =m, t(a,m) = arm, e(m) = (e,m), inv(a,m) = (a=*, arm)

(8,n) o (a,m) = (Ba, m), wheneven = a:m.
The space of objects is clearly a GTS. From Proposition.2.[7jnthe space of arrows
has a structure ofj-topological space. Since the source map is the first projection, it is

G-continuous map. The target mapdscontinuous, because it is defined by thaction.
Let us show that the object mapgdscontinuous. First of all, let us state thRtx M has a
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productG-subspace structure reduced frdinx M. Now,letO andU be G-open sets i’
and M, respectively. Then, for arg-open se x U, we have

_ U ,ifeecO
El(OXU):{@ ftego.

From here it is easily seen that'!(O x U) is G-open inT'. So, the object map is G-
continuous. The inverse mapv is G-continuous, because it is the product of the inversion
in T and theG-action. Since they arg-continuous, the majnv is alsoG-continuous. Fi-
nally, let us show that the partial multiplicationdscontinuous. The partial multiplication
can be written as a composition of maps as shown in the diagram below.

02,3 /I,XId (7‘!‘1)(71’3)

ITx M)gx<;(I'x M) = TxD)x(MxM)—STxMxM —" (I'x M)
((8,n), (@, m)) — ((8, @), (n,m)) — (Ba,n,m) — (Ba, m)

, Wherey is the composition ofi-topological groupl’, 7, is the first projectionss is the
third projection andCs s is the twisting function that changes the locations of the second
and third elements. Since all of these maps@eontinuous, the partial multiplication is
G-continuous.

ThereforeI" x M is aG-topological groupoid.

Definition 3.6. A G-topological groupoid homomorphism frofi, Ty) to (I',T,) is a
groupoid homomorphisifi\, \y) such that\ and Ao are G-continuous maps.

This yields the categorgT'Gpd of G-topological groupoids and their homomorphisms.

Example 3.7. Let (T, s,t,Ty) be a topological groupoid. Since every topological space
isa GTS(T, s, t,Ty) is also ag-topological groupoid. Let us consider tigetopological
groupoid(Ty x Ty, 3, ¢, Ar,) associated t@y. Then the anchor maf, t) : I' — Ty x Ty

is a homomorphism dj-topological groupoids. Indeed, the generalized continuity of the
anchor mag(s, t) follows from the generalized continuityoédnd¢. Namely, let us consider
G-open set®) andU in gr, of s(a) € T'g andt(a) € Ty, resp., for any arrowr € T'. Then

O x U is a basicG-open set containings(«), t(«)). Since(T', s, ,T'g) is a topological
groupoid, the sets, t)~1(O x U) = s~1(O) Nnt~1(U) is G-open set . So, the anchor
map(s, t) is G-continuous. On the other hand, from the groupoid theory, the anchor map is
a groupoid homomorphism. This t) : T' — I'g x Iy is @ homomorphism @f-topological
groupoids.

Definition 3.8. LetI" be ag-topological groupoid ovely. A G-subgroupoid of" is a pair

of (I'*,T'§) of G-subspaceb™* C T, T'jj C T’ together with the restriction structure maps. A
G-subgroupoidI™*, T'§) is called wide ifl'; = I, and is called full ifT"* (m, n) = I'(m,n)
forall m,n € T'.

The identityG-subgroupoid of &-topological groupoid” is the subgroupoid(I'y) =
{1,n | m € Tz} with a subspacg-topology induced fron". The innerG-subgroupoid of

T is the subgroupoidl’ = |J T'(m,m).
mely
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Definition 3.9. A normalG-subgroupoid of &-topological groupoidT',T'y) is a wideG-
subgroupoidA such that for anyx € A(m,m) and anyg € I" with ¢(5) = s(a) = t(«®),
we havedaS~! € A.

Definition 3.10. The kernel of &-homomorphisni), \o) : (I',Ty) — (I',T) is the set
kerh = {a € T'| M) = 1,, for somem € I'y}.

Example 3.11. Let A : ' — IV be ag-homomaorphism. Then, from Definition 2\
has clearly the structure @f-subspace. Alsker ) is the wideG-subgroupoid of", and so
it is a normalG-subgroupoid of. It is easily seen thater\ is wide inI", and normality
follows from

Maya™) = Ma)A(VAa™h) = AMa) M (a™h) =1,y € kerA(m),a € T'(m,n).

Definition 3.12. Let (I',T'y) be agG-topological groupoid.T is transitive if its underly-
ing groupoid is transitive, and is totally intransitive if its underlying groupoid is totally
intransitive.

As an example, itis obvious that the iden@tysubgroupoid and the inngrsubgroupoid
of I" are totally intransitive, because their underlying groupoids are totally intransitive.
Let us now give action of §-topological groupoid on a GTS.

Definition 3.13. LetT" be aG-topological groupoid and led/ be a GTS. Lefl : M — Ty
be agG-continuous map, called moment map. A [gfaction ofI" on M via J is a G-
continuous map : I';x ;M — M, (o, m) — ¢(a, m) = am verifying the equations

i) J(d(,m)) = t(a), i) $(B, ($(cr,m)) = $((B 0 ), m), i) G(1s(my,m) = m,
wherea, 3 € T', m € M. The setM is called a leftG-I'-space. Similarly, it can be also
define a rightG-action.

Example 3.14. EveryG-topological groupoidl” acts on itself from both sides by the par-
tial multiplication of I'. The moment maps areand ¢ for the left and rightG-actions,
respectively.

Example 3.15. Let (T, s, ¢, I'y) be aG-topological groupoid. Thel' acts on thell =T,
via theG-continuous mapy = Id : M = T'g — T'y. Itis easily shown that the conditions
of G-action are hold. So, itis enough to say that the action map

¢:I' g x5 — Ty, (avm) = ¢(aam) = t(a)'
is G-continuous. Clearly, sinceis G-continuous, the actiot is G-continuous.

LetI" be aG-topological groupoid over,, andM aG-I'—space. Fox € I'y, we call the
I, = s~ !(x) Nt~!(z) ag-stable subgroup. Namely,, is aG-topological group with the
structure ofG-subspace induced frog+topological groupoid”. Also, the multiplication
of I, is partial multiplication in[". The unit element ig and every element € ', has an
inverse element—*.

The actionG-topological groupoid given in Example 3.5 was constructed using the
G-topological group action. Now let’s give its construction in case ofghepological
groupoid action.

Example 3.16. Let (T, s, ¢, u, €,inv, T'y) be ag-topological groupoid acting on GT8/
viaJ : M — I'g. Then we can obtain g-topological groupoid with the space of objects
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that is the GTSW and the space of morphisms is GI'S x ; M. It is called actionG-
topological groupoid and denoted Byx M = M or by (I" x M, s1, t1, 1, €1, invy, M).

In the G-topological groupoidT" x M, s1,t1, p1, €1, 9nvy, M), an arrow fromm to m
is a pair (o, m) such that the equality' m = m’. Also we can list the structure maps of
the G-topological groupoidT* x M, s1,t1, p1, €1, inv1, M) as follows:

s1(a,m) =m,

’

ti(a,m) =am=m,

(B, m/)’ (a,m)) = (u(B, @), m) with m = a'm,

invi(a,m) = (™!, a'm), wherea1! is the inverse element of€ T.

Now let us show that thg-continuities of the structure map§-continuity of the source
maps; follows from theG-continuity of the second projection. The target nias itself
G-action, so it is obvioug/-continuous. The object map given by the product x Id :
M — T' x M of the identity/d and the object map of G-topological groupoidT', T'y) is
G-continuous. Also the inverse maypu, is G-continuous, becausew, is defined as the
product of the inverse majmv and theG-action. Finally, the partial multiplication can be
considered as a composition as follows:

T M) «, (Tx M) (T xT) x (M x M) 297 % M ox M ™59 1w
61‘,1

((8,n), (e, m)) — ((B, ), (n,m)) — (u(B; @), n, m) — (u(B, @), m)

, Wherer is the first projectionss is the third projection and’s; s is the twisting function
that changes the locations of the second and third elements. Since all of these maps are
G-continuous, the partial multiplicatiop; is G-continuous.

ConsequentlyI" x M, s1,t1, 1, €1, invy, M) is a G-topological groupoid.

The following definition gives a notion of action ofGatopological groupoid on another
G-topological groupoid.

Definition 3.17. Let (T',T'y) and (£2, ) be G-topological groupoids and lef : Q —
I'y be aG-continuous map, wherg, is regarded as & -topological groupoid consist of
identities only. Then it is called th&t acts on{2 via J if for eacha € I'(m,n) and each
element3 € J~1[m] there is an arrown' 3 € J~![n] such that the following rules hold:
) Ly(s) 3 =B,V €0

i) a'(B2001) = (a'B2) 8 (a'B1), V01,02 € QVa €T

i) aj(ay0) = (a1 0 az) B, Vag, a0 €T, 8 € Q.

In that case it is said tha® is a G-I"-groupoid.

If Q is discrete, this definition be same with the Definition 3.13, where by a discrete
groupoid we mean a groupoid that has only unit arrows as morphisms.
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Definition 3.18. LetI" be aG-topological groupoid acting on bot§-topological spaces
M and N. A G-continuous ma : M — N is I'-equivariant iff Jys (m) = Jn(e(m))
andp(a'm) = a’p(m), Vm € M, wheres(a) = J(m).

The conditions in the definition are equivalent to being that the following diagrams are
commutative:

%) Idxep

M N I'xM——IxN

Ium JN

Ty M 4 N
More generally, we can generalize the definition above forgwopological groupoids
in the following way.
LetI" andI” be G-topological groupoids acting o@-topological spaced/ and M’,
respectively. Lef\ : I' — I be ag-homomorphism, lep : M — M’ be aG-continuous
map. In this case, if the diagram

A
I'x M ki

IV x M’

©

M M’
is commutative, therp is called equivariant map.
An action of ag-topological groupoid on a GTS defines a relation as follows:

Definition 3.19. Let (T, T'y) be aG-topological groupoid acting on a GTH . We define a
relation, called orbit relation, on\/ as follows:

m~niffIa el suchthatam=n

We denote the orbit (or quotient) space according to this relatiofby¥ . Its elements are
said the orbits of th&-action and are denoted dy - m, for m € M. Also, the canonical
projection which assigns to each in M its orbit, is (often) denoted by. Furthermore,

M/T has quotieng-topology by the canonical projection: M — M/T" (namely, a set
O C M/T is G-open inM /T iff the 7=1(0) is G-open inM). The GTSV//T is called the

orbit space.

Proposition 3.20. The orbit relation defined above is an equivalence relation.

Proof. The relation~ is reflexive, because from the third conditionsdefiction we have
1..m = m. For anym,n € M, letm ~ n. Hence there is an arroww € I' such that
n = a'm. Since there exista—! € T such thatn=''n = m, it follows thatn ~ m.

Finally if m ~ n andn ~ k then there exist arrows, 5 € T' such thath = a'm and
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k = [B'n. From the second condition ¢f-action, we havé = (8 o «) - m andm ~ k.
Thus~ is an equivalence relation. O

4. G-TOPOLOGICAL CROSSEDMODULES

We here introduce a new concept with nameg d@bpological crossed module by defin-
ing a crossed module ovértopological groupoids. Therefore, we construct the category
of G-topological crossed modules.

Definition 4.1. A crossed module ovéj-topological groupoids is a triple€ = (1, T, n)
together with a (leftG-action of " on T and aG-homomorphismy : T — T (is called
boundary map), where thg-topological groupoidsl" andI" have the same object space
and 7 is totally intransitive, such that the following conditions hold:

GCR1)p(a'w) = aon(w)oa™! forw € T(m,m), a € I'(m,n)

GCR2)n(w;)'w = wi owow; * forw,w; € Y(m,m).

We will say G-topological crossed module for a crossed modul&j of topological

groupoids.
Let us now give a main example abaittopological crossed module.

Example 4.2. LetT" be aG-topological groupoid and lefT" = |J I'(m,m) be inner
mel
G-topological subgroupoid of. Then, if we take the inclusion ma?p IT" — T as the

boundary map;, we obtain aG-topological crossed modute = (IT', T, 7).

Firstly, let us define thg-action ofl" on IT". TheG-topological groupoid™ acts on inner
G-topological subgroupoidT via the moment mag : IT' — Ty, J(w) = s(w) = m for
anyw € I'(m,m) as follows by the partial multiplication df:

T XIT - IT, (w) —aw=a towoa.

Let us now control the rules in Definition 3.17 are hold.
i) Letusfixedany € IT asw € I'(m, m) C IT. Then

1:](w)w = 1;nu):1mow01;1 =1lpowol,, =w.

i) Forany elementsy,ws € I'(m,m) C IT anda € I'(m, n),
a'(wiowy) = ao(wiows) ocal=aowjol,,ocwyoa !
= aowoa toaowyoa !
= a'wjoaws.
iy Foranya; € I'(m,n), ag € I'(n, k) andw € I'(m, m) C IT,
(troag)w = (ajoag)owo(agom) t=a oagowoagl oaf1
= a0 (ayw)o a;l
= oj(amw).
On the other hand, it is obvious that the actioigontinuous, since it is defined by the

partial multiplication ofG-topological groupoid™. ThereforeI" acts onIT via J.
Now let us show that the conditions of (GCR1) and (GCR2) are hold.
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GCR1)
naw) = nlacwoa™)=ilaocwoa)=aowoa ! =aoci(w)oa?
= aonw)oat
GCR2)
nw)w = nw)owon(w) ™ =i(wi)owoi(w) ™ =wiowouwy .

ThereforeC = (IT, T',4) is aG-topological crossed module.

Definition 4.3. LetC = (Y, T',n) andC’ = (Y’,I",n’) beG-topological crossed modules.
Apair f = (f1, f2) : C — C'is called a homomorphism @gktopological crossed modules,
if the G-continuous mapg; : ' — " and fo : T — Y hold fin =7n'fy and fo(a - w) =
fi(a) - fa(w).

The conditions in the definition are equivalent to be commutative of the following dia-
grams:

Y Tx Y —I2

T f2
77‘ n'
I T I’ T T’

f2
Therefore G-topological crossed modules form a category denote@byg'r M.

5. FROM G7 Gpd TO GT CrM AND FROM G7 CrM TO GT Gpd

In the last part of the study, we prove how a generalized topological crossed module
can be obtained when given a generalized topological groupoid, and how a generalized
topological groupoid can be obtained from it when given a generalized topological crossed
module.

Theorem 5.1. EveryG-topological groupoidT’, I'y ) induces &-topological crossed mod-
ule.

Proof. To show that aG-topological groupoidI’,T"y) induces aG-topological crossed
moduleC = (Y,T',n), we need a totally intransitiv§ - topological groupoidl” and a
G-topological groupoid that acts dfy, both of which have the same object space. Further-
more, we must show that: T — I' is ag-homomorphism.

If we consider the isotropy groupg(m) = {a € T' | s(a) = t(a) = m}, m € Ty,
which each is &-topological group, then we obtain tGetopological groupoid | J T (m)

mely
that is totally intransitive. We denote it &= J YT(m).
mely

From Example 4.2, we have thlgaction of G-topological groupoid® on the totally

intransitiveG-topological groupoidl. = |J Y(m).
mely
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On the other hand, we determine the boundary mag inclusion mapg =i : T =
U Y(m)—T.
mely
After these determinations, let us control the conditions GCR1) and GCR2).
GCR1)

1 -1

na-w) = nlaocwoa™) =ilacwoa )=aowoa”

= aon(c)oat.

=aoi(w)oa

GCR2)

1 1

nwi) w = nwi)owon(w)™ =i(wi)owoilw) T =wiowow .

ThereforeC = (T,T,4) is a G-topological crossed module. Consequently, egeh
topological groupoidI’, T'y) contains & -topological crossed module.
]

As a result of this theorem, we define a funott GT'Gpd — GT CrM.

Theorem 5.2. EveryG-topological crossed module= (Y, T", ) induces aj-topological
groupoidI”.

Proof. LetC = (Y,T',n) be ag-topological crossed module. Then, we can obtain the
actiong-topological groupoid using thg-action ofl" on Y. This is the main idea of proof.
Let us consider the produgttopological spac&” =T' x T = {(a,w) | a € T,w €
T(t(a))}. Then, the algebraic ar@topological details of " =T' x T are obtained in the
same way as in Example 3.16 (see Example 3.16).
O

As a result of this theorem, we define a funcibr G7 CrM — GTGpd.

Remark 5.3. It can normally be expected that these categories should be equivalent. But
the example given below is a counterexample showing that this is not true.

Example 5.4. We know from the Example 3.3 that every Haussgetdpological group
I" is a G-topological groupoid with one object over its identity, namely= . According
to the Theorem 5.1, we obtainGrtopological crossed modul®(I") = (T = I',T,3),
whereI" acts on itself via the conjugation. Now let us apply the funélaio ©(T") =
(T',T,i). Then, according to the Theorem 5.2, we obtain an adfigopological groupoid
Y oO(T) =T x I overl’ with s(a, 3) = 8 andt(«, 8) = aBa~!, wherel acts onl" by
the conjugation.

It is clear that theG-topological groupoidd® = « andI” x I' = T" are not isomorphic
in the categoryGT'Gpd, because their object spaces are different. Therefore, the functor
¥ o0 © is not naturally equivalent to the functégrapq.
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