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Abstract.: In this manuscript, modification of homotopy perturbation
method (HPM) is proposed for integro-differential equations by coupling
the least square method (LSM) with HPM. Improved accuracy in a very
few iterations is the general advantage of this technique. The proposed
method is applied to different higher order integro-differential equations
of linear and nonlinear nature, and results are compared with exact as well
as available solutions from the literature. Numerical and graphical analy-
sis reveal that the proposed algorithm is reliable for integro-differential
equations and hence can be utilized for more complex problems.
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1. INTRODUCTION

Integro-differential equations (IDEs) arise in different fields such as diffusion process
along atomic boundaries and epidemic modeling. Analytic solutions of such IDEs are not
possible in most of the cases, and hence scientist use numerical or semi-numerical meth-
ods for analysis purposes. IDEs can also be seen in multi-phase processes. Examples of
such processes are crystallization and chemical reactors operations [1]. Due to vast indus-
trial applications, IDEs cannot be ignored. Their usage can be seen in many applied fields
such as mathematical physics and engineering sciences. Morchalo investigated higher or-
der IDEs of two point BVPs in [2]. Hamoud solved Fredholm IDEs numerically in [3].
Araghi proposed ADM solution of IDEs [4]. Haris and Manafian used modified Laplace
decomposition method (MLDM) for IDEs [5]. In [6], Hamoud et al. analyzed nonlinear
Voltera family IDEs through Laplace decomposition method. Various methods have been
used for solutions of higher order IDEs and fractional IDEs [7, 8].

Recently, researchers are focusing on the development of more accurate and efficient
schemes for DEs in initial, two point, multi-point and obstacle BVPs. These methods are
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of great interest for the scientific community to accurately explore and predict different
situations. Few of these methods include Adomian decomposition method (ADM) and its
different modifications [9], variation iterative method (VIM) [10], HPM and its various
modifications [11, 12, 13, 14, 15], residual power series method (RPSM) [16], and Block-
Pulse functions method with operational matrix [17].

In the current manuscript, HPM is combined with the method of least square, along with
different homotopies and initial guesses to get accurate solutions of higher order IDEs.
These changes enhance the accuracy of the obtained solutions as compared to other avail-
able schemes given in the literature.

2. CONCEPTUAL FRAMEWORK OF LSHPM FOR INTEGRO-DIFFERENTIAL

EQUATIONS

Let us consider the following IDEs
∫ r

0

Φ(t)dt + N(Φ) + L(Φ) = f(r), r ∈ Ω (2. 1)

with

B(Φ,
dnΦ
drn

) = 0 r ∈ γ. (2. 2)

HereL,N,B are linear, nonlinear and boundary operators.f(r) is known function while
Φ is unknown function. Firstly, describe a homotopyζ(q, r) : Φ× [0, 1] → R, such that:

Ψ(ζ, q) = (1− q) [L(ζ)− L(Φ0)] + q

[
L(ζ) + N(ζ) +

∫ r

0

ζ(t)dt− f(r)
]

= 0, r ∈ Ω

(2. 3)

ζ(q, r) = ζ0 +
∞∑

i=1

qiζi, (2. 4)

Placeq = 1, Homotopy Perturbation solution of (2. 1 ) in series form is

Φ̃ = lim
q→1

ζ(r, q) =
∞∑

i=1

ζi, (2. 5)

To refine HPM solution, we reassign the dummy convergence controlling parametersα′is
as coefficients in (2. 5 ), and substitute modifiedΦ̃ in (2. 1 ) for obtaining the residual
function as:

R(r, αi) = L(Φ̃(r, αi)) + N(Φ̃(r, αi)) +
∫ r

0

Φ̃(t)dt− f(r), (2. 6)

Sum of square of residual (SSR) in this case is

J(αi) =
∫

I

R2(r, αi)dx, (2. 7)
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In next step, we find the optimal values ofα′is from the system of equations∂J
∂αi

=
0, for i = 0, 1, 2, · · · , which significantly improve the accuracy of the obtained so-
lution. For more details about the method can be seen in [18].

3. APPLICATION OFLSHPM TO INTEGRO-DIFFERENTIAL EQUATIONS

Problem 1. Consider the fourth-order linear IDE[19]:

G(iv)(x)− (1 + ex)x− 3ex +
∫ x

0

G(t)dt−G(x) = 0, x ∈ (0, 1) (3. 8)

with
G(0) = 1, G(1) = 1 + e, G′′(1) = 3e, G′′(0) = 2.

with exact solution is1 + xex.

Solution: Firstly, we construct the following homotopy

(1− q)(Giv(x)) + q

(
Giv(x)− (1 + ex)x− 3ex −G(x) +

∫ x

0

G(t)dt

)
= 0

which gives the following various order problems

Zeroth-order problem is

G0
iv(x) = 0, G0(0) = 1, G′′0(0) = 2, G0(1) = 1 + e, G′′0(1) = 3e. (3. 9)

The solution of (3. 9 ) is

G0(x) =
1
6
(6− 4x + 3ex + 6x2 − 2x3 + 3ex3). (3. 10)

First order problem is

G1
(4)(x) +

∫ x

0

G0(t) dt−G0(x)− exx− x− 3ex = 0,

G1(0) = 0, G′′1(0) = 0, G1(1) = 0, G′′1(1) = 0.

(3. 11)

The solution of (3. 11 ) is

G1(x) =
1

120960
(x− 1)(−9ex7 + 6x7 + 63ex6 − 90x6 − 21ex5 + 358x5+

483ex4 − 314x4 + 483ex3 + 4726x3 − 41517ex2 + 15422x2−
41517ex− 45058x + 120960ex − 120960).

(3. 12)

Suming up (3. 10 ) and (3. 12 ), first order HPM solution of (3. 8 ) is

G̃(x) =
1
6

(
3ex3 − 2x3 + 6x2 + 3ex− 4x + 6

)
+

1
120960

(x− 1)(−9ex7+

6x7 + 63ex6 − 90x6 − 21ex5 + 358x5 + 483ex4 − 314x4+

483ex3 + 4726x3 − 41517ex2 + 15422x2 − 41517ex− 45058x+

120960ex − 120960).

(3. 13)
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Since (3. 13 ) consists ofx0, ex, xex, x, x2, x3, x4, x5, x6, x7, x8 and hence we have to find
first order LSHPM solution of the form

G̃(x) = c0 + c1e
x + c2x + c3e

xx + c4x
2 + c5x

3 + c6x
4 + c7x

5 + c8x
6 + c9x

7 + c10x
8,

Applying the boundary conditions from (3. 8 ), we obtain the values ofc0, c1, c2, c3. After
that replacingG with G̃ in (3. 8 ) gives residual function

R(x, c4, c5, c6, c7, c8, c9, c10) = G̃(iv)(x)− x(1 + ex)− 3ex − G̃(x) +
∫ x

0

˜G(t)dt,

Next for finding optimalc′is, sum of squared residual is obtained as

J(ci) =
∫ 1

0

R2(x, ci)dx, (3. 14)

Solving the system∂J
∂ci

= 0, leads to the following first order LSHPM solution

G̃(x) =1 + xex. (3. 15)

Which is closed form solution. Results related to problem 1 are shown in Table 1.

Exact LSHPM HPM
x Sol. Sol. Error Sol. Error
0. 1. 1. 0. 1. 0.
0.1 1.11052 1.11052 0. 1.11032 1.99× 10−4

0.2 1.24428 1.24428 0. 1.2439 3.76× 10−4

0.3 1.40496 1.40496 0. 1.40444 5.14× 10−4

0.4 1.59673 1.59673 0. 1.59613 5.97× 10−4

0.5 1.82436 1.82436 0. 1.82374 6.18× 10−4

0.6 2.09327 2.09327 0. 2.09269 5.78× 10−4

0.7 2.40963 2.40963 0. 2.40914 4.83× 10−4

0.8 2.78043 2.78043 0. 2.78009 3.45× 10−4

0.9 3.21364 3.21364 0. 3.21346 1.79× 10−4

1. 3.71828 3.71828 0. 3.71828 0.

Table 1: Comparison of first order solution and error in Problem 1.

Problem 2. Fourth-order linear IDE[7, 20]

G(iv)(x) = x(1 + ex) + 3ex +G(x)−
∫ x

0

G(t)dt, 0 < x < 1 (3. 16)

G(0) = 1, G(1) = 1 + e, G′(1) = 2e G′(0) = 1.
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Figure 1: Comparison of solutions in Problem 1.
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Figure 2: Comparison of errors in Problem 1.

Exact solution in this case is1 + xex.

Solution: After applying basic theory of LSHPM given in section 2, first order LSHPM
solution is

G̃(x) = 1 + xex.

which is closed form solution. Results related to this problem can be seen in Table 2.

Problem 3. Fourth-order nonlinear IDE[7, 20]

G(iv)(x) = 1 +
∫ x

0

e−tG2(t)dt, 0 < x < 1 (3. 17)
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Exact LSHPM HPM VIM
x Sol. Sol. Error Sol. Error Error [?]
0. 1. 1. 0. 1. 0. 0.
0.1 1.11052 1.11052 0. 1.11051 3.40× 10−6 2.0× 10−10

0.2 1.24428 1.24428 0. 1.24427 1.10× 10−5 6.09× 10−10

0.3 1.40496 1.40496 0. 1.40494 1.92× 10−5 1.4× 10−9

0.4 1.59673 1.59673 0. 1.5967 2.50× 10−5 1.2× 10−9

0.5 1.82436 1.82436 0. 1.82433 2.66× 10−5 3.5× 10−9

0.6 2.09327 2.09327 0. 2.09325 2.36× 10−5 2.0× 10−9

0.7 2.40963 2.40963 0. 2.40961 1.71× 10−5 3.0× 10−9

0.8 2.78043 2.78043 0. 2.78042 9.27× 10−6 1.0× 10−9

0.9 3.21364 3.21364 0. 3.21364 2.67× 10−6 2.0× 10−9

1. 3.71828 3.71828 0. 3.71828 0. 1.0× 10−9

Table 2: Comparison of first order solution and error in Problem 2.
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Figure 3: Comparison of solutions in Problem 2.

G(1) = e, G(0) = 1, G′(1) = e, G′(0) = 1.

Exact solution in this case isex.

Solution: After applying proposed method which is given in section 2, zeroth-order
LSHPM solution is

G̃(x) =7.77081× 10−17 + ex + 7.77081× 10−17x + 3.39245× 10−17x2 + 2.18918× 10−17x3

Results related to this problem are shown in table 3.
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Figure 4: Comparison of errors in Problem 2.

Exact LSHPM HPM VIM
x Sol. Sol. Error Sol. Error Error [?]
0. 1. 1. 0. 1. 0. 0.
0.1 1.10517 1.10517 0. 1.10412 1.04× 10−3 1.27× 10−5

0.2 1.2214 1.2214 0. 1.21803 3.37× 10−3 4.36× 10−5

0.3 1.34986 1.34986 0. 1.34394 5.92× 10−3 8.17× 10−5

0.4 1.49182 1.49182 2.22× 10−16 1.4839 7.88× 10−3 1.16× 10−4

0.5 1.64872 1.64872 2.22× 10−16 1.63999 8.73× 10−3 1.38× 10−4

0.6 1.82212 1.82212 2.22× 10−16 1.81391 8.20× 10−3 1.39× 10−4

0.7 2.01375 2.01375 0. 2.00734 6.41× 10−3 1.17× 10−4

0.8 2.22554 2.22554 0. 2.22174 3.80× 10−3 7.47× 10−5

0.9 2.4596 2.4596 0. 2.45838 1.22× 10−3 2.59× 10−5

1. 2.71828 2.71828 0. 2.71828 4.44× 10−16 0.

Table 3: Comparison of zeroth-order solution and error in Problem 3.

Problem 4. Fifth order linear IDE[21]

G(v)(x) = (ex + 1)x + 4ex +G(x)−
∫ x

0

G(t)dt, 0 < x < 3 (3. 18)

with
G(0) = 1, G(1) = 1 + e,G′(0) = 1, G′(1) = 2e, G′′(0) = 2.

Exact solution is1 + xex.

Solution: Use scheme given in section 2, first-order LSHPM solution is

G̃(x) =1 + xex.
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Figure 5: Comparison of solutions in Problem 3.
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Figure 6: Comparison of errors in Problem 3.

Results related to this problem can be seen in table 4.

Problem 5. Fifth order non-linear IDE[21]

1 +
∫ x

0

G3(t)e−2tdx = G
(v)

(x), x ∈ (0, 3) (3. 19)

G(3) = e3, G(2) = e2, G(1) = e, G′(0) = 1, G(0) = 1.

Exact solution in this case isex.
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Exact LSHPM HPM
x Sol. Sol. Error Sol. Error
0. 1. 1. 0. 1. 0.
0.1 1.11052 1.11052 0. 1.11052 6.45× 10−9

0.2 1.24428 1.24428 0. 1.24428 4.32× 10−8

0.3 1.40496 1.40496 0. 1.40496 1.18× 10−7

0.4 1.59673 1.59673 0. 1.59673 2.16× 10−7

0.5 1.82436 1.82436 0. 1.82436 3.06× 10−7

0.6 2.09327 2.09327 0. 2.09327 3.49× 10−7

0.7 2.40963 2.40963 0. 2.40963 3.19× 10−7

0.8 2.78043 2.78043 0. 2.78043 2.13× 10−7

0.9 3.21364 3.21364 0. 3.21364 7.57× 10−8

1. 3.71828 3.71828 0. 3.71828 4.44× 10−16

Table 4: Comparison of first order solution and error in Problem 4.
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Figure 7: Comparison of solutions in Problem 4.

Solution: After applying general theory given in section 2, zeroth-order LSHPM solu-
tion is

G̃(x) =1.0545× 10−15 + ex + 1.0545× 10−15x + 2.23652× 10−16x2 + 7.54882× 10−16x3

− 2.9813× 10−16x4 + 7.70205× 10−17x5

Results related to this problem can be seen in Problem 5.

4. CONCLUSION

In this article, HPM and modified HPM were applied to higher order linear and nonlinear
IDEs of order four and five. Validity of the obtained results is confirmed by comparing them
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Figure 8: Comparison of errors in Problem 4.

Exact LSHPM HPM
x Sol. Sol. Error Sol. Error
0. 1. 1. 1.11× 10−16 1. 0.
0.1 1.10517 1.10517 2.22× 10−16 1.10728 2.10× 10−3

0.2 1.2214 1.2214 2.22× 10−16 1.22838 6.97× 10−3

0.3 1.34986 1.34986 2.22× 10−16 1.36258 1.27× 10−2

0.4 1.49182 1.49182 2.22× 10−16 1.50971 1.78× 10−2

0.5 1.64872 1.64872 2.22× 10−16 1.67009 2.13× 10−2

0.6 1.82212 1.82212 2.22× 10−16 1.84457 2.24× 10−2

0.7 2.01375 2.01375 0. 2.03452 2.07× 10−2

0.8 2.22554 2.22554 0. 2.2418 1.62× 10−2

0.9 2.4596 2.4596 0. 2.46877 9.16× 10−3

1. 2.71828 2.71828 0. 2.71828 0.

Table 5: Comparison of zeroth order solution and error in Problem 5.

with exact and other available solutions in the literature. Quantitative analysis has been
performed in Tables [1-5] by presenting solutions along with errors in each case. These
tables clearly indicate that LSHPM is reliable algorithm, and provide improved accuracy
by incorporating few additional steps. Validity of proposed technique is also confirmed
from graphical illustrations. It is clearly seen that modified method is an effective for
IDEs, and can be extended to other families of differential equations.
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Figure 9: Comparison of solutions in Problem 5.
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Figure 10: Comparison of errors in Problem 5.
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